Files
FastDeploy/fastdeploy/entrypoints/cli/benchmark/endpoint_request_func.py
Zhang Yulong 5532e8a323 [FD CLI] Add bench cli (#4160)
* add bench cli

* Update test_main.py
2025-09-22 20:37:30 +08:00

703 lines
27 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/backend_request_func.py
import io
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
"""Input for requesting LLMs via API"""
no: int
prompt: str
history_QA: Optional[dict]
hyper_parameters: dict
api_url: str
prompt_len: int
output_len: int
model: str
model_name: Optional[str] = None
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
debug: bool = False
@dataclass
class RequestFuncOutput:
"""Output for requesting LLMs via API"""
no: int = 0
generated_text: str = ""
reasoning_content: str = ""
success: bool = False
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
arrival_time: list = field(default_factory=list) # arrival_time
itl: list = field(default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
prompt_tokens: int = 0 # 推理侧返回输入token数
error: str = ""
async def async_request_eb_openai_chat_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using EB OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), "OpenAI Chat Completions API URL must end with 'completions'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model,
"messages": request_func_input.history_QA,
"stream": True,
"stream_options": {
"include_usage": True,
"continuous_usage_stats": True,
},
}
# 超参由yaml传入
payload.update(request_func_input.hyper_parameters)
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.debug:
print(f"payload:{json.dumps(payload, ensure_ascii=False)}")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
output = RequestFuncOutput()
output.prompt_len = 0
output.no = request_func_input.no
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
# print("####chunk:", chunk, type(chunk))
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
reason_content = choices[0]["delta"].get("reasoning_content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# cached_tokens
output.prompt_len = (
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
)
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.generated_text += content or ""
output.reasoning_content += reason_content or ""
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
elif usage := data.get("usage", {}):
output.output_tokens = usage.get("completion_tokens", 0)
output.prompt_tokens = usage.get("prompt_tokens", 0)
most_recent_timestamp = timestamp
# output.generated_text = generated_text
if output.generated_text.strip() == "":
output.success = False
output.error = "No generated text found!"
else:
output.success = True
output.latency = most_recent_timestamp - st
else:
error_text = await response.text()
print(
"####error response:",
error_text,
"####payload:",
payload,
)
output.error = error_text or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
# 保存失败请求结果
if not output.success:
with open("error_output.txt", "a") as f:
f.write(str(output) + "\n")
if pbar:
pbar.update(1)
if request_func_input.debug:
print("#####final_output:", output)
return output
async def async_request_eb_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using EB OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"stream": True,
"stream_options": {
"include_usage": True,
"continuous_usage_stats": True,
},
}
# 超参由yaml传入
payload.update(request_func_input.hyper_parameters)
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.debug:
print("payload:", json.dumps(payload, ensure_ascii=False))
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
"Content-Type": "application/json",
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
output.no = request_func_input.no
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
# print("####chunk:", chunk, chunk.usage)
timestamp = time.perf_counter()
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
# First token
if not first_chunk_received:
first_chunk_received = True
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
generated_text += text or ""
most_recent_timestamp = timestamp
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
elif usage := data.get("usage"):
output.prompt_tokens = usage.get("prompt_tokens")
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
if output.generated_text == "":
output.success = False
output.error = "No generated text found!"
else:
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if request_func_input.debug:
print(f"final_output:{output}")
if pbar:
pbar.update(1)
return output
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using the TGI API"""
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
params = {
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
"truncate": request_func_input.prompt_len,
"ignore_eos_token": request_func_input.ignore_eos,
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
output.output_tokens = request_func_input.output_len
else:
output.output_tokens = None
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk_bytes = chunk_bytes.decode("utf-8")
# NOTE: Sometimes TGI returns a ping response without
# any data, we should skip it.
if chunk_bytes.startswith(":"):
continue
chunk = chunk_bytes.removeprefix("data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.arrival_time.append(data["arrival_time"])
output.latency = most_recent_timestamp - st
output.success = True
output.generated_text = data["generated_text"]
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using TRT's llm_server"""
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using Deepspeed MII"""
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
# will use 0 as placeholder.
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url, json=payload) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0]["text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = "Unexpected response format: " "neither 'choices' nor 'text' found"
output.success = False
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
"prompt": request_func_input.prompt,
# "temperature": 0.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
# "stream_options": {
# "include_usage": True,
# },
}
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
# print("####chunk:", chunk, type(chunk))
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
timestamp = time.perf_counter()
# First token
if not first_chunk_received:
first_chunk_received = True
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += text or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using OpenAI"""
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(
("transcriptions", "translations")
), "OpenAI Chat Completions API URL must end with 'transcriptions' "
"or `translations`."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, data=form, headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_eb_openai_completions,
"openai-chat": async_request_eb_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v
in (
async_request_openai_completions,
async_request_eb_openai_chat_completions,
)
]