mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Model] Refactor PaddleClas module (#505)
* Refactor the PaddleClas module * fix bug * remove debug code * clean unused code * support pybind * Update fd_tensor.h * Update fd_tensor.cc * temporary revert python api * fix ci error * fix code style problem
This commit is contained in:
@@ -121,4 +121,4 @@ void Concat(const std::vector<FDTensor>& x, FDTensor* out, int axis) {
|
||||
*out = std::move(out_temp);
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
||||
} // namespace fastdeploy
|
0
fastdeploy/pybind/runtime.cc
Executable file → Normal file
0
fastdeploy/pybind/runtime.cc
Executable file → Normal file
@@ -14,9 +14,6 @@
|
||||
|
||||
#include "fastdeploy/vision/classification/ppcls/model.h"
|
||||
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
#include "yaml-cpp/yaml.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
@@ -25,8 +22,7 @@ PaddleClasModel::PaddleClasModel(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
config_file_ = config_file;
|
||||
const ModelFormat& model_format) : preprocessor_(config_file) {
|
||||
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO, Backend::PDINFER,
|
||||
Backend::LITE};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||
@@ -38,11 +34,6 @@ PaddleClasModel::PaddleClasModel(const std::string& model_file,
|
||||
}
|
||||
|
||||
bool PaddleClasModel::Initialize() {
|
||||
if (!BuildPreprocessPipelineFromConfig()) {
|
||||
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
@@ -50,105 +41,41 @@ bool PaddleClasModel::Initialize() {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::BuildPreprocessPipelineFromConfig() {
|
||||
processors_.clear();
|
||||
YAML::Node cfg;
|
||||
try {
|
||||
cfg = YAML::LoadFile(config_file_);
|
||||
} catch (YAML::BadFile& e) {
|
||||
FDERROR << "Failed to load yaml file " << config_file_
|
||||
<< ", maybe you should check this file." << std::endl;
|
||||
return false;
|
||||
}
|
||||
auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
|
||||
processors_.push_back(std::make_shared<BGR2RGB>());
|
||||
for (const auto& op : preprocess_cfg) {
|
||||
FDASSERT(op.IsMap(),
|
||||
"Require the transform information in yaml be Map type.");
|
||||
auto op_name = op.begin()->first.as<std::string>();
|
||||
if (op_name == "ResizeImage") {
|
||||
int target_size = op.begin()->second["resize_short"].as<int>();
|
||||
bool use_scale = false;
|
||||
int interp = 1;
|
||||
processors_.push_back(
|
||||
std::make_shared<ResizeByShort>(target_size, 1, use_scale));
|
||||
} else if (op_name == "CropImage") {
|
||||
int width = op.begin()->second["size"].as<int>();
|
||||
int height = op.begin()->second["size"].as<int>();
|
||||
processors_.push_back(std::make_shared<CenterCrop>(width, height));
|
||||
} else if (op_name == "NormalizeImage") {
|
||||
auto mean = op.begin()->second["mean"].as<std::vector<float>>();
|
||||
auto std = op.begin()->second["std"].as<std::vector<float>>();
|
||||
auto scale = op.begin()->second["scale"].as<float>();
|
||||
FDASSERT((scale - 0.00392157) < 1e-06 && (scale - 0.00392157) > -1e-06,
|
||||
"Only support scale in Normalize be 0.00392157, means the pixel "
|
||||
"is in range of [0, 255].");
|
||||
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
||||
} else if (op_name == "ToCHWImage") {
|
||||
processors_.push_back(std::make_shared<HWC2CHW>());
|
||||
} else {
|
||||
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::Preprocess(Mat* mat, FDTensor* output) {
|
||||
for (size_t i = 0; i < processors_.size(); ++i) {
|
||||
if (!(*(processors_[i].get()))(mat)) {
|
||||
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
||||
<< "." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
int channel = mat->Channels();
|
||||
int width = mat->Width();
|
||||
int height = mat->Height();
|
||||
output->name = InputInfoOfRuntime(0).name;
|
||||
output->SetExternalData({1, channel, height, width}, FDDataType::FP32,
|
||||
mat->Data());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::Postprocess(const FDTensor& infer_result,
|
||||
ClassifyResult* result, int topk) {
|
||||
int num_classes = infer_result.shape[1];
|
||||
const float* infer_result_buffer =
|
||||
reinterpret_cast<const float*>(infer_result.Data());
|
||||
topk = std::min(num_classes, topk);
|
||||
result->label_ids =
|
||||
utils::TopKIndices(infer_result_buffer, num_classes, topk);
|
||||
result->scores.resize(topk);
|
||||
for (int i = 0; i < topk; ++i) {
|
||||
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> processed_data(1);
|
||||
if (!Preprocess(&mat, &(processed_data[0]))) {
|
||||
FDERROR << "Failed to preprocess input data while using model:"
|
||||
<< ModelName() << "." << std::endl;
|
||||
postprocessor_.SetTopk(topk);
|
||||
if (!Predict(*im, result)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
|
||||
std::vector<ClassifyResult> results;
|
||||
if (!BatchPredict({im}, &results)) {
|
||||
return false;
|
||||
}
|
||||
*result = std::move(results[0]);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors)) {
|
||||
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<FDTensor> infer_result(1);
|
||||
if (!Infer(processed_data, &infer_result)) {
|
||||
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
||||
<< std::endl;
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer(reused_input_tensors, &reused_output_tensors)) {
|
||||
FDERROR << "Failed to inference by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(infer_result[0], result, topk)) {
|
||||
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
||||
<< std::endl;
|
||||
if (!postprocessor_.Run(reused_output_tensors, results)) {
|
||||
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@@ -14,8 +14,8 @@
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
#include "fastdeploy/vision/classification/ppcls/preprocessor.h"
|
||||
#include "fastdeploy/vision/classification/ppcls/postprocessor.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
@@ -43,28 +43,46 @@ class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel {
|
||||
/// Get model's name
|
||||
virtual std::string ModelName() const { return "PaddleClas/Model"; }
|
||||
|
||||
/** \brief Predict the classification result for an input image
|
||||
/** \brief DEPRECATED Predict the classification result for an input image, remove at 1.0 version
|
||||
*
|
||||
* \param[in] im The input image data, comes from cv::imread()
|
||||
* \param[in] result The output classification result will be writen to this structure
|
||||
* \param[in] topk (int)The topk result by the classify confidence score, default 1
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
// TODO(jiangjiajun) Batch is on the way
|
||||
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
||||
|
||||
|
||||
/** \brief Predict the classification result for an input image
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread()
|
||||
* \param[in] result The output classification result
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
|
||||
|
||||
/** \brief Predict the classification results for a batch of input images
|
||||
*
|
||||
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
||||
* \param[in] results The output classification result list
|
||||
* \return true if the prediction successed, otherwise false
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
||||
std::vector<ClassifyResult>* results);
|
||||
|
||||
/// Get preprocessor reference of PaddleClasModel
|
||||
virtual PaddleClasPreprocessor& GetPreprocessor() {
|
||||
return preprocessor_;
|
||||
}
|
||||
|
||||
/// Get postprocessor reference of PaddleClasModel
|
||||
virtual PaddleClasPostprocessor& GetPostprocessor() {
|
||||
return postprocessor_;
|
||||
}
|
||||
|
||||
protected:
|
||||
bool Initialize();
|
||||
|
||||
bool BuildPreprocessPipelineFromConfig();
|
||||
|
||||
bool Preprocess(Mat* mat, FDTensor* outputs);
|
||||
|
||||
bool Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
||||
int topk = 1);
|
||||
|
||||
std::vector<std::shared_ptr<Processor>> processors_;
|
||||
std::string config_file_;
|
||||
PaddleClasPreprocessor preprocessor_;
|
||||
PaddleClasPostprocessor postprocessor_;
|
||||
};
|
||||
|
||||
typedef PaddleClasModel PPLCNet;
|
||||
|
53
fastdeploy/vision/classification/ppcls/postprocessor.cc
Normal file
53
fastdeploy/vision/classification/ppcls/postprocessor.cc
Normal file
@@ -0,0 +1,53 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/ppcls/postprocessor.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
PaddleClasPostprocessor::PaddleClasPostprocessor(int topk) {
|
||||
topk_ = topk;
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
bool PaddleClasPostprocessor::Run(const std::vector<FDTensor>& infer_result, std::vector<ClassifyResult>* results) {
|
||||
if (!initialized_) {
|
||||
FDERROR << "Postprocessor is not initialized." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
int batch = infer_result[0].shape[0];
|
||||
int num_classes = infer_result[0].shape[1];
|
||||
const float* infer_result_data = reinterpret_cast<const float*>(infer_result[0].Data());
|
||||
|
||||
results->resize(batch);
|
||||
|
||||
int topk = std::min(num_classes, topk_);
|
||||
for (int i = 0; i < batch; ++i) {
|
||||
(*results)[i].label_ids = utils::TopKIndices(infer_result_data + i * num_classes, num_classes, topk);
|
||||
(*results)[i].scores.resize(topk);
|
||||
for (int j = 0; j < topk; ++j) {
|
||||
(*results)[i].scores[j] = infer_result_data[i * num_classes + (*results)[i].label_ids[j]];
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
55
fastdeploy/vision/classification/ppcls/postprocessor.h
Normal file
55
fastdeploy/vision/classification/ppcls/postprocessor.h
Normal file
@@ -0,0 +1,55 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
namespace classification {
|
||||
/*! @brief Postprocessor object for PaddleClas serials model.
|
||||
*/
|
||||
class FASTDEPLOY_DECL PaddleClasPostprocessor {
|
||||
public:
|
||||
/** \brief Create a postprocessor instance for PaddleClas serials model
|
||||
*
|
||||
* \param[in] topk The topk result filtered by the classify confidence score, default 1
|
||||
*/
|
||||
explicit PaddleClasPostprocessor(int topk = 1);
|
||||
|
||||
/** \brief Process the result of runtime and fill to ClassifyResult structure
|
||||
*
|
||||
* \param[in] tensors The inference result from runtime
|
||||
* \param[in] result The output result of classification
|
||||
* \return true if the postprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(const std::vector<FDTensor>& tensors,
|
||||
std::vector<ClassifyResult>* result);
|
||||
|
||||
/// Set topk value
|
||||
void SetTopk(int topk) { topk_ = topk; }
|
||||
|
||||
/// Get topk value
|
||||
int GetTopk() const { return topk_; }
|
||||
|
||||
private:
|
||||
int topk_ = 1;
|
||||
bool initialized_ = false;
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -15,16 +15,62 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindPaddleClas(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
|
||||
m, "PaddleClasPreprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
|
||||
m, "PaddleClasPostprocessor")
|
||||
.def(pybind11::init<int>())
|
||||
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
if (!self.Run(inputs, &results)) {
|
||||
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results)) {
|
||||
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
|
||||
|
||||
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
|
||||
m, "PaddleClasModel")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("predict", [](vision::classification::PaddleClasModel& self,
|
||||
pybind11::array& data, int topk = 1) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult res;
|
||||
self.Predict(&mat, &res, topk);
|
||||
return res;
|
||||
});
|
||||
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
|
||||
cv::Mat im = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult result;
|
||||
self.Predict(im, &result);
|
||||
return result;
|
||||
})
|
||||
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
108
fastdeploy/vision/classification/ppcls/preprocessor.cc
Normal file
108
fastdeploy/vision/classification/ppcls/preprocessor.cc
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/classification/ppcls/preprocessor.h"
|
||||
#include "fastdeploy/function/concat.h"
|
||||
#include "yaml-cpp/yaml.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace classification {
|
||||
|
||||
PaddleClasPreprocessor::PaddleClasPreprocessor(const std::string& config_file) {
|
||||
FDASSERT(BuildPreprocessPipelineFromConfig(config_file), "Failed to create PaddleClasPreprocessor.");
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
bool PaddleClasPreprocessor::BuildPreprocessPipelineFromConfig(const std::string& config_file) {
|
||||
processors_.clear();
|
||||
YAML::Node cfg;
|
||||
try {
|
||||
cfg = YAML::LoadFile(config_file);
|
||||
} catch (YAML::BadFile& e) {
|
||||
FDERROR << "Failed to load yaml file " << config_file
|
||||
<< ", maybe you should check this file." << std::endl;
|
||||
return false;
|
||||
}
|
||||
auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
|
||||
processors_.push_back(std::make_shared<BGR2RGB>());
|
||||
for (const auto& op : preprocess_cfg) {
|
||||
FDASSERT(op.IsMap(),
|
||||
"Require the transform information in yaml be Map type.");
|
||||
auto op_name = op.begin()->first.as<std::string>();
|
||||
if (op_name == "ResizeImage") {
|
||||
int target_size = op.begin()->second["resize_short"].as<int>();
|
||||
bool use_scale = false;
|
||||
int interp = 1;
|
||||
processors_.push_back(
|
||||
std::make_shared<ResizeByShort>(target_size, 1, use_scale));
|
||||
} else if (op_name == "CropImage") {
|
||||
int width = op.begin()->second["size"].as<int>();
|
||||
int height = op.begin()->second["size"].as<int>();
|
||||
processors_.push_back(std::make_shared<CenterCrop>(width, height));
|
||||
} else if (op_name == "NormalizeImage") {
|
||||
auto mean = op.begin()->second["mean"].as<std::vector<float>>();
|
||||
auto std = op.begin()->second["std"].as<std::vector<float>>();
|
||||
auto scale = op.begin()->second["scale"].as<float>();
|
||||
FDASSERT((scale - 0.00392157) < 1e-06 && (scale - 0.00392157) > -1e-06,
|
||||
"Only support scale in Normalize be 0.00392157, means the pixel "
|
||||
"is in range of [0, 255].");
|
||||
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
||||
} else if (op_name == "ToCHWImage") {
|
||||
processors_.push_back(std::make_shared<HWC2CHW>());
|
||||
} else {
|
||||
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Fusion will improve performance
|
||||
FuseTransforms(&processors_);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleClasPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
|
||||
if (!initialized_) {
|
||||
FDERROR << "The preprocessor is not initialized." << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (images->size() == 0) {
|
||||
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < images->size(); ++i) {
|
||||
for (size_t j = 0; j < processors_.size(); ++j) {
|
||||
if (!(*(processors_[j].get()))(&((*images)[i]))) {
|
||||
FDERROR << "Failed to processs image:" << i << " in " << processors_[i]->Name() << "." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
outputs->resize(1);
|
||||
// Concat all the preprocessed data to a batch tensor
|
||||
std::vector<FDTensor> tensors(images->size());
|
||||
for (size_t i = 0; i < images->size(); ++i) {
|
||||
(*images)[i].ShareWithTensor(&(tensors[i]));
|
||||
tensors[i].ExpandDim(0);
|
||||
}
|
||||
Concat(tensors, &((*outputs)[0]), 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
50
fastdeploy/vision/classification/ppcls/preprocessor.h
Normal file
50
fastdeploy/vision/classification/ppcls/preprocessor.h
Normal file
@@ -0,0 +1,50 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
|
||||
namespace classification {
|
||||
/*! @brief Preprocessor object for PaddleClas serials model.
|
||||
*/
|
||||
class FASTDEPLOY_DECL PaddleClasPreprocessor {
|
||||
public:
|
||||
/** \brief Create a preprocessor instance for PaddleClas serials model
|
||||
*
|
||||
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
|
||||
*/
|
||||
explicit PaddleClasPreprocessor(const std::string& config_file);
|
||||
|
||||
/** \brief Process the input image and prepare input tensors for runtime
|
||||
*
|
||||
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
||||
* \param[in] outputs The output tensors which will feed in runtime
|
||||
* \return true if the preprocess successed, otherwise false
|
||||
*/
|
||||
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
||||
|
||||
|
||||
private:
|
||||
bool BuildPreprocessPipelineFromConfig(const std::string& config_file);
|
||||
std::vector<std::shared_ptr<Processor>> processors_;
|
||||
bool initialized_ = false;
|
||||
};
|
||||
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -51,7 +51,7 @@ bool ResizeByShort::ImplByFlyCV(Mat* mat) {
|
||||
} else if (interp_ == 2) {
|
||||
interp_method = fcv::InterpolationType::INTER_CUBIC;
|
||||
} else {
|
||||
FDERROR << "LimitLong: Only support interp_ be 0/1/2 with FlyCV, but "
|
||||
FDERROR << "LimitByShort: Only support interp_ be 0/1/2 with FlyCV, but "
|
||||
"now it's "
|
||||
<< interp_ << "." << std::endl;
|
||||
return false;
|
||||
|
@@ -35,6 +35,14 @@ std::string ClassifyResult::Str() {
|
||||
return out;
|
||||
}
|
||||
|
||||
ClassifyResult& ClassifyResult::operator=(ClassifyResult&& other) {
|
||||
if (&other != this) {
|
||||
label_ids = std::move(other.label_ids);
|
||||
scores = std::move(other.scores);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Mask::Reserve(int size) { data.reserve(size); }
|
||||
|
||||
void Mask::Resize(int size) { data.resize(size); }
|
||||
|
@@ -44,6 +44,7 @@ struct FASTDEPLOY_DECL BaseResult {
|
||||
/*! @brief Classify result structure for all the image classify models
|
||||
*/
|
||||
struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
|
||||
ClassifyResult() = default;
|
||||
/// Classify result for an image
|
||||
std::vector<int32_t> label_ids;
|
||||
/// The confidence for each classify result
|
||||
@@ -53,6 +54,11 @@ struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
|
||||
/// Clear result
|
||||
void Clear();
|
||||
|
||||
/// Copy constructor
|
||||
ClassifyResult(const ClassifyResult& other) = default;
|
||||
/// Move assignment
|
||||
ClassifyResult& operator=(ClassifyResult&& other);
|
||||
|
||||
/// Debug function, convert the result to string to print
|
||||
std::string Str();
|
||||
};
|
||||
|
@@ -14,8 +14,9 @@
|
||||
from __future__ import absolute_import
|
||||
|
||||
from .contrib.yolov5cls import YOLOv5Cls
|
||||
from .ppcls import PaddleClasModel
|
||||
from .ppcls import *
|
||||
from .contrib.resnet import ResNet
|
||||
|
||||
PPLCNet = PaddleClasModel
|
||||
PPLCNetv2 = PaddleClasModel
|
||||
EfficientNet = PaddleClasModel
|
||||
|
@@ -18,6 +18,42 @@ from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class PaddleClasPreprocessor:
|
||||
def __init__(self, config_file):
|
||||
"""Create a preprocessor for PaddleClasModel from configuration file
|
||||
|
||||
:param config_file: (str)Path of configuration file, e.g resnet50/inference_cls.yaml
|
||||
"""
|
||||
self._preprocessor = C.vision.classification.PaddleClasPreprocessor(
|
||||
config_file)
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for PaddleClasModel
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
|
||||
class PaddleClasPostprocessor:
|
||||
def __init__(self, topk=1):
|
||||
"""Create a postprocessor for PaddleClasModel
|
||||
|
||||
:param topk: (int)Filter the top k classify label
|
||||
"""
|
||||
self._postprocessor = C.vision.classification.PaddleClasPostprocessor(
|
||||
topk)
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClasModel
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
|
||||
class PaddleClasModel(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
@@ -45,9 +81,35 @@ class PaddleClasModel(FastDeployModel):
|
||||
def predict(self, im, topk=1):
|
||||
"""Classify an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param topk: (int)The topk result by the classify confidence score, default 1
|
||||
:param im: (numpy.ndarray) The input image data, a 3-D array with layout HWC, BGR format
|
||||
:param topk: (int) Filter the topk classify result, default 1
|
||||
:return: ClassifyResult
|
||||
"""
|
||||
|
||||
return self._model.predict(im, topk)
|
||||
self.postprocessor.topk = topk
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of ClassifyResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get PaddleClasPreprocessor object of the loaded model
|
||||
|
||||
:return PaddleClasPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get PaddleClasPostprocessor object of the loaded model
|
||||
|
||||
:return PaddleClasPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
||||
|
@@ -22,9 +22,11 @@ import runtime_config as rc
|
||||
|
||||
def test_classification_mobilenetv2():
|
||||
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_x0_25_infer.tgz"
|
||||
input_url = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg"
|
||||
input_url1 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg"
|
||||
input_url2 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00030010.jpeg"
|
||||
fd.download_and_decompress(model_url, "resources")
|
||||
fd.download(input_url, "resources")
|
||||
fd.download(input_url1, "resources")
|
||||
fd.download(input_url2, "resources")
|
||||
model_path = "resources/MobileNetV1_x0_25_infer"
|
||||
|
||||
model_file = "resources/MobileNetV1_x0_25_infer/inference.pdmodel"
|
||||
@@ -33,18 +35,67 @@ def test_classification_mobilenetv2():
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=rc.test_option)
|
||||
|
||||
expected_label_ids = [153, 333, 259, 338, 265, 154]
|
||||
expected_scores = [
|
||||
expected_label_ids_1 = [153, 333, 259, 338, 265, 154]
|
||||
expected_scores_1 = [
|
||||
0.221088, 0.109457, 0.078668, 0.076814, 0.052401, 0.048206
|
||||
]
|
||||
expected_label_ids_2 = [80, 23, 93, 99, 143, 7]
|
||||
expected_scores_2 = [
|
||||
0.975599, 0.014083, 0.003821, 0.001571, 0.001233, 0.000924
|
||||
]
|
||||
|
||||
# compare diff
|
||||
im = cv2.imread("./resources/ILSVRC2012_val_00000010.jpeg")
|
||||
for i in range(2):
|
||||
result = model.predict(im, topk=6)
|
||||
diff_label = np.fabs(
|
||||
np.array(result.label_ids) - np.array(expected_label_ids))
|
||||
diff_scores = np.fabs(
|
||||
np.array(result.scores) - np.array(expected_scores))
|
||||
assert diff_label.max() < 1e-06, "There's difference in classify label."
|
||||
assert diff_scores.max(
|
||||
) < 1e-05, "There's difference in classify score."
|
||||
im1 = cv2.imread("./resources/ILSVRC2012_val_00000010.jpeg")
|
||||
im2 = cv2.imread("./resources/ILSVRC2012_val_00030010.jpeg")
|
||||
|
||||
# for i in range(3000000):
|
||||
while True:
|
||||
# test single predict
|
||||
model.postprocessor.topk = 6
|
||||
result1 = model.predict(im1)
|
||||
result2 = model.predict(im2)
|
||||
|
||||
diff_label_1 = np.fabs(
|
||||
np.array(result1.label_ids) - np.array(expected_label_ids_1))
|
||||
diff_label_2 = np.fabs(
|
||||
np.array(result2.label_ids) - np.array(expected_label_ids_2))
|
||||
|
||||
diff_scores_1 = np.fabs(
|
||||
np.array(result1.scores) - np.array(expected_scores_1))
|
||||
diff_scores_2 = np.fabs(
|
||||
np.array(result2.scores) - np.array(expected_scores_2))
|
||||
assert diff_label_1.max(
|
||||
) < 1e-06, "There's difference in classify label 1."
|
||||
assert diff_scores_1.max(
|
||||
) < 1e-05, "There's difference in classify score 1."
|
||||
assert diff_label_2.max(
|
||||
) < 1e-06, "There's difference in classify label 2."
|
||||
assert diff_scores_2.max(
|
||||
) < 1e-05, "There's difference in classify score 2."
|
||||
|
||||
# test batch predict
|
||||
results = model.batch_predict([im1, im2])
|
||||
result1 = results[0]
|
||||
result2 = results[1]
|
||||
|
||||
diff_label_1 = np.fabs(
|
||||
np.array(result1.label_ids) - np.array(expected_label_ids_1))
|
||||
diff_label_2 = np.fabs(
|
||||
np.array(result2.label_ids) - np.array(expected_label_ids_2))
|
||||
|
||||
diff_scores_1 = np.fabs(
|
||||
np.array(result1.scores) - np.array(expected_scores_1))
|
||||
diff_scores_2 = np.fabs(
|
||||
np.array(result2.scores) - np.array(expected_scores_2))
|
||||
assert diff_label_1.max(
|
||||
) < 1e-06, "There's difference in classify label 1."
|
||||
assert diff_scores_1.max(
|
||||
) < 1e-05, "There's difference in classify score 1."
|
||||
assert diff_label_2.max(
|
||||
) < 1e-06, "There's difference in classify label 2."
|
||||
assert diff_scores_2.max(
|
||||
) < 1e-05, "There's difference in classify score 2."
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_classification_mobilenetv2()
|
||||
|
Reference in New Issue
Block a user