Files
FastDeploy/fastdeploy/vision/classification/ppcls/model.cc
Jason 3589c0fa94 [Model] Refactor PaddleClas module (#505)
* Refactor the PaddleClas module

* fix bug

* remove debug code

* clean unused code

* support pybind

* Update fd_tensor.h

* Update fd_tensor.cc

* temporary revert python api

* fix ci error

* fix code style problem
2022-11-07 19:33:47 +08:00

85 lines
2.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/ppcls/model.h"
namespace fastdeploy {
namespace vision {
namespace classification {
PaddleClasModel::PaddleClasModel(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) : preprocessor_(config_file) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO, Backend::PDINFER,
Backend::LITE};
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PaddleClasModel::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
postprocessor_.SetTopk(topk);
if (!Predict(*im, result)) {
return false;
}
return true;
}
bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
std::vector<ClassifyResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors, &reused_output_tensors)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors, results)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy