Files
FastDeploy/tests/models/test_mobilenetv2.py
Jason 3589c0fa94 [Model] Refactor PaddleClas module (#505)
* Refactor the PaddleClas module

* fix bug

* remove debug code

* clean unused code

* support pybind

* Update fd_tensor.h

* Update fd_tensor.cc

* temporary revert python api

* fix ci error

* fix code style problem
2022-11-07 19:33:47 +08:00

102 lines
4.0 KiB
Python
Executable File

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_classification_mobilenetv2():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_x0_25_infer.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00030010.jpeg"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
model_path = "resources/MobileNetV1_x0_25_infer"
model_file = "resources/MobileNetV1_x0_25_infer/inference.pdmodel"
params_file = "resources/MobileNetV1_x0_25_infer/inference.pdiparams"
config_file = "resources/MobileNetV1_x0_25_infer/inference_cls.yaml"
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=rc.test_option)
expected_label_ids_1 = [153, 333, 259, 338, 265, 154]
expected_scores_1 = [
0.221088, 0.109457, 0.078668, 0.076814, 0.052401, 0.048206
]
expected_label_ids_2 = [80, 23, 93, 99, 143, 7]
expected_scores_2 = [
0.975599, 0.014083, 0.003821, 0.001571, 0.001233, 0.000924
]
# compare diff
im1 = cv2.imread("./resources/ILSVRC2012_val_00000010.jpeg")
im2 = cv2.imread("./resources/ILSVRC2012_val_00030010.jpeg")
# for i in range(3000000):
while True:
# test single predict
model.postprocessor.topk = 6
result1 = model.predict(im1)
result2 = model.predict(im2)
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expected_label_ids_1))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expected_label_ids_2))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expected_scores_1))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expected_scores_2))
assert diff_label_1.max(
) < 1e-06, "There's difference in classify label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in classify score 1."
assert diff_label_2.max(
) < 1e-06, "There's difference in classify label 2."
assert diff_scores_2.max(
) < 1e-05, "There's difference in classify score 2."
# test batch predict
results = model.batch_predict([im1, im2])
result1 = results[0]
result2 = results[1]
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expected_label_ids_1))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expected_label_ids_2))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expected_scores_1))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expected_scores_2))
assert diff_label_1.max(
) < 1e-06, "There's difference in classify label 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in classify score 1."
assert diff_label_2.max(
) < 1e-06, "There's difference in classify label 2."
assert diff_scores_2.max(
) < 1e-05, "There's difference in classify score 2."
if __name__ == "__main__":
test_classification_mobilenetv2()