# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import pickle import numpy as np import runtime_config as rc def test_classification_mobilenetv2(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/MobileNetV1_x0_25_infer.tgz" input_url1 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg" input_url2 = "https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00030010.jpeg" fd.download_and_decompress(model_url, "resources") fd.download(input_url1, "resources") fd.download(input_url2, "resources") model_path = "resources/MobileNetV1_x0_25_infer" model_file = "resources/MobileNetV1_x0_25_infer/inference.pdmodel" params_file = "resources/MobileNetV1_x0_25_infer/inference.pdiparams" config_file = "resources/MobileNetV1_x0_25_infer/inference_cls.yaml" model = fd.vision.classification.PaddleClasModel( model_file, params_file, config_file, runtime_option=rc.test_option) expected_label_ids_1 = [153, 333, 259, 338, 265, 154] expected_scores_1 = [ 0.221088, 0.109457, 0.078668, 0.076814, 0.052401, 0.048206 ] expected_label_ids_2 = [80, 23, 93, 99, 143, 7] expected_scores_2 = [ 0.975599, 0.014083, 0.003821, 0.001571, 0.001233, 0.000924 ] # compare diff im1 = cv2.imread("./resources/ILSVRC2012_val_00000010.jpeg") im2 = cv2.imread("./resources/ILSVRC2012_val_00030010.jpeg") # for i in range(3000000): while True: # test single predict model.postprocessor.topk = 6 result1 = model.predict(im1) result2 = model.predict(im2) diff_label_1 = np.fabs( np.array(result1.label_ids) - np.array(expected_label_ids_1)) diff_label_2 = np.fabs( np.array(result2.label_ids) - np.array(expected_label_ids_2)) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expected_scores_1)) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expected_scores_2)) assert diff_label_1.max( ) < 1e-06, "There's difference in classify label 1." assert diff_scores_1.max( ) < 1e-05, "There's difference in classify score 1." assert diff_label_2.max( ) < 1e-06, "There's difference in classify label 2." assert diff_scores_2.max( ) < 1e-05, "There's difference in classify score 2." # test batch predict results = model.batch_predict([im1, im2]) result1 = results[0] result2 = results[1] diff_label_1 = np.fabs( np.array(result1.label_ids) - np.array(expected_label_ids_1)) diff_label_2 = np.fabs( np.array(result2.label_ids) - np.array(expected_label_ids_2)) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expected_scores_1)) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expected_scores_2)) assert diff_label_1.max( ) < 1e-06, "There's difference in classify label 1." assert diff_scores_1.max( ) < 1e-05, "There's difference in classify score 1." assert diff_label_2.max( ) < 1e-06, "There's difference in classify label 2." assert diff_scores_2.max( ) < 1e-05, "There's difference in classify score 2." if __name__ == "__main__": test_classification_mobilenetv2()