plate color support

This commit is contained in:
we0091234
2023-03-27 23:28:30 +08:00
parent 03651aaee5
commit 8f9e8cc8fd
9 changed files with 177 additions and 45 deletions

1
.gitignore vendored
View File

@@ -20,6 +20,7 @@ test_imgs/
weixian/
moto/
pic/
mytest_img/
# 不忽略下面指定的文件类型
!*.cpp
!*.h

View File

@@ -76,11 +76,14 @@ def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num,device,plate_re
# h_w_r = roi_img_w/roi_img_h
if class_label : #判断是否是双层车牌,是双牌的话进行分割后然后拼接
roi_img=get_split_merge(roi_img)
plate_number = get_plate_result(roi_img,device,plate_rec_model) #对车牌小图进行识别
plate_number,rec_prob,plate_color,color_conf = get_plate_result(roi_img,device,plate_rec_model) #对车牌小图进行识别
result_dict['rect']=rect
result_dict['landmarks']=landmarks_np.tolist()
result_dict['plate_no']=plate_number
result_dict['rec_conf']=rec_prob #每个字符的概率
result_dict['plate_color']=plate_color
result_dict['color_conf']=color_conf
result_dict['roi_height']=roi_img.shape[0]
result_dict['score']=conf
result_dict['label']=class_label
@@ -122,39 +125,46 @@ def draw_result(orgimg,dict_list):
for result in dict_list:
rect_area = result['rect']
# x,y,w,h = rect_area[0],rect_area[1],rect_area[2]-rect_area[0],rect_area[3]-rect_area[1]
# padding_w = 0
# padding_h = 0
# rect_area[0]=max(0,int(x-padding_w))
# rect_area[1]=max(0,int(y-padding_h))
# rect_area[2]=min(orgimg.shape[0],int(rect_area[2]+padding_w))
# rect_area[3]=min(orgimg.shape[1],int(rect_area[3]+padding_h))
x,y,w,h = rect_area[0],rect_area[1],rect_area[2]-rect_area[0],rect_area[3]-rect_area[1]
padding_w = 0.05*w
padding_h = 0.11*h
rect_area[0]=max(0,int(x-padding_w))
rect_area[1]=max(0,int(y-padding_h))
rect_area[2]=min(orgimg.shape[1],int(rect_area[2]+padding_w))
rect_area[3]=min(orgimg.shape[0],int(rect_area[3]+padding_h))
rect_area = [int(x) for x in rect_area]
height_area = result['roi_height']
landmarks=result['landmarks']
result = result['plate_no']
result_str+=result+" "
result_p = result['plate_no']+" "+result['plate_color']
result_str+=result_p+" "
cv2.rectangle(orgimg,(rect_area[0],rect_area[1]),(rect_area[2],rect_area[3]),(0,0,255),2) #画框
labelSize = cv2.getTextSize(result_p,cv2.FONT_HERSHEY_SIMPLEX,0.5,1)
if rect_area[0]+labelSize[0][0]>orgimg.shape[1]: #防止显示的文字越界
rect_area[0]=int(orgimg.shape[1]-labelSize[0][0])
orgimg=cv2.rectangle(orgimg,(rect_area[0],int(rect_area[1]-round(1.6*labelSize[0][1]))),(int(rect_area[0]+round(1.2*labelSize[0][0])),rect_area[1]+labelSize[1]),(255,255,255),cv2.FILLED)
if len(result)>1:
for i in range(4): #关键点
cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
orgimg=cv2ImgAddText(orgimg,result,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area)
orgimg=cv2ImgAddText(orgimg,result_p,rect_area[0],int(rect_area[1]-round(1.6*labelSize[0][1])),(0,0,0),21)
# orgimg=cv2ImgAddText(orgimg,result,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area)
print(result_str)
return orgimg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--detect_model', nargs='+', type=str, default='weights/yolov7-lite-s.pt', help='model.pt path(s)')
parser.add_argument('--rec_model', type=str, default='weights/plate_rec_small.pth', help='model.pt path(s)')
parser.add_argument('--detect_model', nargs='+', type=str, default='weights/yolov7-lite-s.pt', help='model.pt path(s)') #检测模型
parser.add_argument('--rec_model', type=str, default='weights/plate_rec_color.pth', help='model.pt path(s)') #车牌识别 +颜色识别
parser.add_argument('--source', type=str, default='imgs', help='source') # file/folder, 0 for webcam
# parser.add_argument('--img-size', nargs= '+', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--output', type=str, default='result', help='source')
parser.add_argument('--kpt-label', type=int, default=4, help='number of keypoints')
# device =torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
device =torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
opt = parser.parse_args()
print(opt)
model = attempt_load(opt.detect_model, map_location=device)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 745 KiB

View File

@@ -26,7 +26,7 @@ from utils.torch_utils import select_device
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

View File

@@ -232,10 +232,10 @@ def draw_result(orgimg,dict_list):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--detect_model',type=str, default=r'runs/train/yolov714/weights/best.onnx', help='model.pt path(s)') #检测模型
parser.add_argument('--detect_model',type=str, default=r'weights/yolov7-lite-s.onnx', help='model.pt path(s)') #检测模型
parser.add_argument('--rec_model', type=str, default='weights/plate_rec.onnx', help='model.pt path(s)')#识别模型
parser.add_argument('--image_path', type=str, default=r'pic', help='source')
parser.add_argument('--img_size', type=int, default=320, help='inference size (pixels)')
parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--output', type=str, default='result', help='source')
opt = parser.parse_args()
file_list = []

View File

@@ -47,7 +47,7 @@ class myNet_ocr(nn.Module):
if self.export:
conv = x.squeeze(2) # b *512 * width
conv = conv.transpose(2,1) # [w, b, c]
conv =conv.argmax(dim=2)
# conv =conv.argmax(dim=2)
return conv
else:
b, c, h, w = x.size()
@@ -95,9 +95,109 @@ class myNet(nn.Module):
x = x.view(x.size(0), -1)
y = self.classifier(x)
return y
class MyNet_color(nn.Module):
def __init__(self, class_num=6):
super(MyNet_color, self).__init__()
self.class_num = class_num
self.backbone = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=(5, 5), stride=(1, 1)), # 0
torch.nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2)),
nn.Dropout(0),
nn.Flatten(),
nn.Linear(480, 64),
nn.Dropout(0),
nn.ReLU(),
nn.Linear(64, class_num),
nn.Dropout(0),
nn.Softmax(1)
)
def forward(self, x):
logits = self.backbone(x)
return logits
class myNet_ocr_color(nn.Module):
def __init__(self,cfg=None,num_classes=78,export=False,color_num=None):
super(myNet_ocr_color, self).__init__()
if cfg is None:
cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256]
# cfg =[32,32,'M',64,64,'M',128,128,'M',256,256]
self.feature = self.make_layers(cfg, True)
self.export = export
self.color_num=color_num
self.conv_out_num=12 #颜色第一个卷积层输出通道12
if self.color_num:
self.conv1=nn.Conv2d(cfg[-1],self.conv_out_num,kernel_size=3,stride=2)
self.bn1=nn.BatchNorm2d(self.conv_out_num)
self.relu1=nn.ReLU(inplace=True)
self.gap =nn.AdaptiveAvgPool2d(output_size=1)
self.color_classifier=nn.Conv2d(self.conv_out_num,self.color_num,kernel_size=1,stride=1)
self.color_bn = nn.BatchNorm2d(self.color_num)
self.flatten = nn.Flatten()
self.loc = nn.MaxPool2d((5, 2), (1, 1),(0,1),ceil_mode=False)
self.newCnn=nn.Conv2d(cfg[-1],num_classes,1,1)
# self.newBn=nn.BatchNorm2d(num_classes)
def make_layers(self, cfg, batch_norm=False):
layers = []
in_channels = 3
for i in range(len(cfg)):
if i == 0:
conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = cfg[i]
else :
if cfg[i] == 'M':
layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=(1,1),stride =1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = cfg[i]
return nn.Sequential(*layers)
def forward(self, x):
x = self.feature(x)
if self.color_num:
x_color=self.conv1(x)
x_color=self.bn1(x_color)
x_color =self.relu1(x_color)
x_color = self.color_classifier(x_color)
x_color = self.color_bn(x_color)
x_color =self.gap(x_color)
x_color = self.flatten(x_color)
x=self.loc(x)
x=self.newCnn(x)
if self.export:
conv = x.squeeze(2) # b *512 * width
conv = conv.transpose(2,1) # [w, b, c]
if self.color_num:
return conv,x_color
return conv
else:
b, c, h, w = x.size()
assert h == 1, "the height of conv must be 1"
conv = x.squeeze(2) # b *512 * width
conv = conv.permute(2, 0, 1) # [w, b, c]
output = F.log_softmax(conv, dim=2)
if self.color_num:
return output,x_color
return output
if __name__ == '__main__':
x = torch.randn(1,3,48,168)
x = torch.randn(1,3,48,216)
model = myNet_ocr(num_classes=78,export=True)
out = model(x)
print(out.shape)

View File

@@ -1,4 +1,4 @@
from plate_recognition.plateNet import myNet_ocr
from plate_recognition.plateNet import myNet_ocr,myNet_ocr_color
import torch
import torch.nn as nn
import cv2
@@ -20,16 +20,19 @@ def allFilePath(rootPath,allFIleList):
else:
allFilePath(os.path.join(rootPath,temp),allFIleList)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device("cpu")
color=['黑色','蓝色','绿色','白色','黄色']
plateName=r"#京沪津渝冀晋蒙辽吉黑苏浙皖闽赣鲁豫鄂湘粤桂琼川贵云藏陕甘青宁新学警港澳挂使领民航危0123456789ABCDEFGHJKLMNPQRSTUVWXYZ险品"
mean_value,std_value=(0.588,0.193)
def decodePlate(preds):
pre=0
newPreds=[]
index=[]
for i in range(len(preds)):
if preds[i]!=0 and preds[i]!=pre:
newPreds.append(preds[i])
index.append(i)
pre=preds[i]
return newPreds
return newPreds,index
def image_processing(img,device):
img = cv2.resize(img, (168,48))
@@ -45,54 +48,72 @@ def image_processing(img,device):
img = img.view(1, *img.size())
return img
def get_plate_result(img,device,model):
def get_plate_result(img,device,model,is_color=True):
input = image_processing(img,device)
preds = model(input)
# print(preds)
preds=preds.view(-1).detach().cpu().numpy()
newPreds=decodePlate(preds)
if is_color: #是否识别颜色
preds,color_preds = model(input)
color_preds = torch.softmax(color_preds,dim=-1)
color_conf,color_index = torch.max(color_preds,dim=-1)
color_conf=color_conf.item()
else:
preds = model(input)
preds=torch.softmax(preds,dim=-1)
prob,index=preds.max(dim=-1)
index = index.view(-1).detach().cpu().numpy()
prob=prob.view(-1).detach().cpu().numpy()
# preds=preds.view(-1).detach().cpu().numpy()
newPreds,new_index=decodePlate(index)
prob=prob[new_index]
plate=""
for i in newPreds:
plate+=plateName[i]
# if not (plate[0] in plateName[1:44] ):
# return ""
return plate
if is_color:
return plate,prob,color[color_index],color_conf #返回车牌号以及每个字符的概率,以及颜色,和颜色的概率
else:
return plate,prob
def init_model(device,model_path):
def init_model(device,model_path,is_color = True):
# print( print(sys.path))
# model_path ="plate_recognition/model/checkpoint_61_acc_0.9715.pth"
check_point = torch.load(model_path,map_location=device)
model_state=check_point['state_dict']
cfg=check_point['cfg']
# model_path = os.sep.join([sys.path[0],model_path])
model = myNet_ocr(num_classes=78,export=True,cfg=cfg)
color_classes=0
if is_color:
color_classes=5 #颜色类别数
model = myNet_ocr_color(num_classes=len(plateName),export=True,cfg=cfg,color_num=color_classes)
model.load_state_dict(model_state)
model.load_state_dict(model_state,strict=False)
model.to(device)
model.eval()
return model
# model = init_model(device)
if __name__ == '__main__':
model_path = r"weights/plate_rec_color.pth"
image_path ="images/tmp2424.png"
testPath = r"double_plate"
testPath = r"/mnt/Gpan/Mydata/pytorchPorject/CRNN/crnn_plate_recognition/images"
fileList=[]
allFilePath(testPath,fileList)
# result = get_plate_result(image_path,device)
# print(result)
model = init_model(device)
is_color = False
model = init_model(device,model_path,is_color=is_color)
right=0
begin = time.time()
for imge_path in fileList:
plate=get_plate_result(imge_path)
plate_ori = imge_path.split('/')[-1].split('_')[0]
# print(plate,"---",plate_ori)
if(plate==plate_ori):
right+=1
img=cv2.imread(imge_path)
if is_color:
plate,_,plate_color,_=get_plate_result(img,device,model,is_color=is_color)
print(plate)
else:
print(plate_ori,"--->",plate,imge_path)
end=time.time()
print("sum:%d ,right:%d , accuracy: %f, time: %f"%(len(fileList),right,right/len(fileList),end-begin))
plate,_=get_plate_result(img,device,model,is_color=is_color)
print(plate,imge_path)

BIN
weights/plate_rec_color.pth Normal file

Binary file not shown.