Merge pull request #860 from onepanelio/feat/update-templates

feat: Update all templates for dynamic node labels and new file syncing
This commit is contained in:
Rush Tehrani
2021-01-31 17:39:38 -08:00
committed by GitHub
15 changed files with 1511 additions and 5 deletions

View File

@@ -86,7 +86,7 @@ templates:
optional: true
`
const pytorchMnistWorkflowTemplateName = "PyTorch Training"
const pytorchWorkflowTemplateName = "PyTorch Training"
func initialize20200605090509() {
if _, ok := initializedMigrations[20200605090509]; !ok {
@@ -120,7 +120,7 @@ func Up20200605090509(tx *sql.Tx) error {
}
workflowTemplate := &v1.WorkflowTemplate{
Name: pytorchMnistWorkflowTemplateName,
Name: pytorchWorkflowTemplateName,
Manifest: pytorchMnistWorkflowTemplate,
}
@@ -150,7 +150,7 @@ func Down20200605090509(tx *sql.Tx) error {
return err
}
uid, err := uid2.GenerateUID(pytorchMnistWorkflowTemplateName, 30)
uid, err := uid2.GenerateUID(pytorchWorkflowTemplateName, 30)
if err != nil {
return err
}

View File

@@ -17,7 +17,7 @@ func initialize20201221194344() {
func Up20201221194344(tx *sql.Tx) error {
return updateWorkflowTemplateManifest(
filepath.Join("workflows", "pytorch-mnist-training", "20201221194344.yaml"),
pytorchMnistWorkflowTemplateName,
pytorchWorkflowTemplateName,
map[string]string{
"created-by": "system",
},
@@ -29,7 +29,7 @@ func Down20201221194344(tx *sql.Tx) error {
// This code is executed when the migration is rolled back.
return updateWorkflowTemplateManifest(
filepath.Join("workflows", "pytorch-mnist-training", "20200605090509.yaml"),
pytorchMnistWorkflowTemplateName,
pytorchWorkflowTemplateName,
map[string]string{
"created-by": "system",
},

View File

@@ -0,0 +1,129 @@
package migration
import (
"database/sql"
"github.com/pressly/goose"
"path/filepath"
)
func initialize20210118175809() {
if _, ok := initializedMigrations[20210118175809]; !ok {
goose.AddMigration(Up20210118175809, Down20210118175809)
initializedMigrations[20210118175809] = true
}
}
// Up20210118175809 updates workflows so that the nodePoolSelector label is based on k8s config
func Up20210118175809(tx *sql.Tx) error {
// This code is executed when the migration is applied.
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "hyperparameter-tuning", "20210118175809.yaml"),
hyperparameterTuningTemplateName,
map[string]string{
"framework": "tensorflow",
"tuner": "TPE",
"created-by": "system",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "maskrcnn-training", "20210118175809.yaml"),
maskRCNNWorkflowTemplateName,
map[string]string{
"created-by": "system",
"used-by": "cvat",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "pytorch-mnist-training", "20210118175809.yaml"),
pytorchWorkflowTemplateName,
map[string]string{
"created-by": "system",
"framework": "pytorch",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "tensorflow-mnist-training", "20210118175809.yaml"),
tensorflowWorkflowTemplateName,
map[string]string{
"created-by": "system",
"framework": "tensorflow",
},
); err != nil {
return err
}
return updateWorkflowTemplateManifest(
filepath.Join("workflows", "tf-object-detection-training", "20210118175809.yaml"),
tensorflowObjectDetectionWorkflowTemplateName,
map[string]string{
"created-by": "system",
"used-by": "cvat",
},
)
}
// Down20210118175809 reverts the migration
func Down20210118175809(tx *sql.Tx) error {
// This code is executed when the migration is rolled back.
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "tf-object-detection-training", "20201223202929.yaml"),
tensorflowObjectDetectionWorkflowTemplateName,
map[string]string{
"created-by": "system",
"used-by": "cvat",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "tensorflow-mnist-training", "20201223062947.yaml"),
tensorflowWorkflowTemplateName,
map[string]string{
"created-by": "system",
"framework": "tensorflow",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "pytorch-mnist-training", "20201221194344.yaml"),
pytorchWorkflowTemplateName,
map[string]string{
"created-by": "system",
},
); err != nil {
return err
}
if err := updateWorkflowTemplateManifest(
filepath.Join("workflows", "maskrcnn-training", "20201221195937.yaml"),
maskRCNNWorkflowTemplateName,
map[string]string{
"created-by": "system",
"used-by": "cvat",
},
); err != nil {
return err
}
return updateWorkflowTemplateManifest(
filepath.Join("workflows", "hyperparameter-tuning", "20201225172926.yaml"),
hyperparameterTuningTemplateName,
map[string]string{
"framework": "tensorflow",
"tuner": "TPE",
"created-by": "system",
},
)
}

View File

@@ -0,0 +1,30 @@
package migration
import (
"database/sql"
"github.com/pressly/goose"
"path/filepath"
)
func initialize20210129134326() {
if _, ok := initializedMigrations[20210129134326]; !ok {
goose.AddMigration(Up20210129134326, Down20210129134326)
initializedMigrations[20210129134326] = true
}
}
//Up20210129134326 updates CVAT to latest image
func Up20210129134326(tx *sql.Tx) error {
// This code is executed when the migration is applied.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "cvat", "20210129134326.yaml"),
cvatTemplateName)
}
//Down20210129134326 reverts to previous CVAT image
func Down20210129134326(tx *sql.Tx) error {
// This code is executed when the migration is rolled back.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "cvat", "20210107094725.yaml"),
cvatTemplateName)
}

View File

@@ -0,0 +1,30 @@
package migration
import (
"database/sql"
"github.com/pressly/goose"
"path/filepath"
)
func initialize20210129142057() {
if _, ok := initializedMigrations[20210129142057]; !ok {
goose.AddMigration(Up20210129142057, Down20210129142057)
initializedMigrations[20210129142057] = true
}
}
// Up20210129142057 updates the jupyterlab workspace template
func Up20210129142057(tx *sql.Tx) error {
// This code is executed when the migration is applied.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "jupyterlab", "20210129142057.yaml"),
jupyterLabTemplateName)
}
// Down20210129142057 rolls back the jupyterab workspace template update
func Down20210129142057(tx *sql.Tx) error {
// This code is executed when the migration is rolled back.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "jupyterlab", "20201229205644.yaml"),
jupyterLabTemplateName)
}

View File

@@ -0,0 +1,33 @@
package migration
import (
"database/sql"
"github.com/pressly/goose"
"path/filepath"
)
func initialize20210129152427() {
if _, ok := initializedMigrations[20210129152427]; !ok {
goose.AddMigration(Up20210129152427, Down20210129152427)
initializedMigrations[20210129152427] = true
}
}
// Up20210129152427 migration will add lifecycle hooks to VSCode template.
// These hooks will attempt to export the conda, pip, and vscode packages that are installed,
// to a text file.
// On workspace resume / start, the code then tries to install these packages.
func Up20210129152427(tx *sql.Tx) error {
// This code is executed when the migration is applied.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "vscode", "20210129152427.yaml"),
vscodeWorkspaceTemplateName)
}
// Down20210129152427 removes the lifecycle hooks from VSCode workspace template.
func Down20210129152427(tx *sql.Tx) error {
// This code is executed when the migration is rolled back.
return updateWorkspaceTemplateManifest(
filepath.Join("workspaces", "vscode", "20201028145443.yaml"),
vscodeWorkspaceTemplateName)
}

View File

@@ -86,6 +86,10 @@ func Initialize() {
initialize20201225172926()
initialize20201229205644()
initialize20210107094725()
initialize20210118175809()
initialize20210129134326()
initialize20210129142057()
initialize20210129152427()
if err := client.DB.Close(); err != nil {
log.Printf("[error] closing db %v", err)

View File

@@ -0,0 +1,189 @@
# source: https://github.com/onepanelio/templates/blob/master/workflows/nni-hyperparameter-tuning/mnist/
# Workflow Template example for hyperparameter tuning
# Documentation: https://docs.onepanel.ai/docs/reference/workflows/hyperparameter-tuning
#
# Only change the fields marked with [CHANGE]
entrypoint: main
arguments:
parameters:
# [CHANGE] Path to your training/model architecture code repository
# Change this value and revision value to your code repository and branch respectively
- name: source
value: https://github.com/onepanelio/templates
# [CHANGE] Revision is the branch or tag that you want to use
# You can change this to any tag or branch name in your repository
- name: revision
value: v0.18.0
# [CHANGE] Default configuration for the NNI tuner
# See https://docs.onepanel.ai/docs/reference/workflows/hyperparameter-tuning#understanding-the-configurations
- name: config
displayName: Configuration
required: true
hint: NNI configuration
type: textarea.textarea
value: |-
authorName: Onepanel, Inc.
experimentName: MNIST TF v2.x
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
trainingServicePlatform: local
searchSpacePath: search_space.json
useAnnotation: false
tuner:
# gpuIndices: '0' # uncomment and update to the GPU indices to assign this tuner
builtinTunerName: TPE # choices: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
classArgs:
optimize_mode: maximize # choices: maximize, minimize
trial:
command: python main.py --output /mnt/output
codeDir: .
# gpuNum: 1 # uncomment and update to number of GPUs
# [CHANGE] Search space configuration
# Change according to your hyperparameters and ranges
- name: search-space
displayName: Search space configuration
required: true
type: textarea.textarea
value: |-
{
"dropout_rate": { "_type": "uniform", "_value": [0.5, 0.9] },
"conv_size": { "_type": "choice", "_value": [2, 3, 5, 7] },
"hidden_size": { "_type": "choice", "_value": [124, 512, 1024] },
"batch_size": { "_type": "choice", "_value": [16, 32] },
"learning_rate": { "_type": "choice", "_value": [0.0001, 0.001, 0.01, 0.1] },
"epochs": { "_type": "choice", "_value": [10] }
}
# Node pool dropdown (Node group in EKS)
# You can add more of these if you have additional tasks that can run on different node pools
- displayName: Node pool
hint: Name of node pool or group to run this workflow task
type: select.nodepool
name: sys-node-pool
value: {{.DefaultNodePoolOption}}
required: true
templates:
- name: main
dag:
tasks:
- name: hyperparameter-tuning
template: hyperparameter-tuning
- name: metrics-writer
template: metrics-writer
dependencies: [hyperparameter-tuning]
arguments:
# Use sys-metrics artifact output from hyperparameter-tuning Task
# This writes the best metrics to the Workflow
artifacts:
- name: sys-metrics
from: "{{tasks.hyperparameter-tuning.outputs.artifacts.sys-metrics}}"
- name: hyperparameter-tuning
inputs:
artifacts:
- name: src
# Clone the above repository into '/mnt/data/src'
# See https://docs.onepanel.ai/docs/reference/workflows/artifacts#git for private repositories
git:
repo: '{{workflow.parameters.source}}'
revision: '{{workflow.parameters.revision}}'
path: /mnt/data/src
# [CHANGE] Path where config.yaml will be generated or already exists
# Update the path below so that config.yaml is written to the same directory as your main.py file
# Note that your source code is cloned to /mnt/data/src
- name: config
path: /mnt/data/src/workflows/hyperparameter-tuning/mnist/config.yaml
raw:
data: '{{workflow.parameters.config}}'
# [CHANGE] Path where search_space.json will be generated or already exists
# Update the path below so that search_space.json is written to the same directory as your main.py file
# Note that your source code is cloned to /mnt/data/src
- name: search-space
path: /mnt/data/src/workflows/hyperparameter-tuning/mnist/search_space.json
raw:
data: '{{workflow.parameters.search-space}}'
outputs:
artifacts:
- name: output
path: /mnt/output
optional: true
container:
image: onepanel/dl:0.17.0
args:
- --config
# [CHANGE] Update the path below to point to config.yaml path as described above
- /mnt/data/src/workflows/hyperparameter-tuning/mnist/config.yaml
workingDir: /mnt
volumeMounts:
- name: hyperparamtuning-data
mountPath: /mnt/data
- name: hyperparamtuning-output
mountPath: /mnt/output
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
sidecars:
- name: nni-web-ui
image: onepanel/nni-web-ui:0.17.0
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
ports:
- containerPort: 9000
name: nni
- name: tensorboard
image: onepanel/dl:0.17.0
command:
- sh
- '-c'
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
args:
# Read logs from /mnt/output/tensorboard - /mnt/output is auto-mounted from volumeMounts
- tensorboard --logdir /mnt/output/tensorboard
ports:
- containerPort: 6006
name: tensorboard
# Use the metrics-writer tasks to write best metrics to Workflow
- name: metrics-writer
inputs:
artifacts:
- name: sys-metrics
path: /tmp/sys-metrics.json
- git:
repo: https://github.com/onepanelio/templates.git
revision: v0.18.0
name: src
path: /mnt/src
container:
image: onepanel/python-sdk:v0.16.0
command:
- python
- -u
args:
- /mnt/src/tasks/metrics-writer/main.py
- --from_file=/tmp/sys-metrics.json
# [CHANGE] Volumes that will mount to /mnt/data (annotated data) and /mnt/output (models, checkpoints, logs)
# Update this depending on your annotation data, model, checkpoint, logs, etc. sizes
# Example values: 250Mi, 500Gi, 1Ti
volumeClaimTemplates:
- metadata:
name: hyperparamtuning-data
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 20Gi
- metadata:
name: hyperparamtuning-output
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 20Gi

View File

@@ -0,0 +1,208 @@
# source: https://github.com/onepanelio/templates/blob/master/workflows/maskrcnn-training/
arguments:
parameters:
- name: cvat-annotation-path
value: 'artifacts/{{workflow.namespace}}/annotations/'
hint: Path to annotated data (COCO format) in default object storage. In CVAT, this parameter will be pre-populated.
displayName: Dataset path
visibility: internal
- name: val-split
value: 10
displayName: Validation split size
type: input.number
visibility: public
hint: Enter validation set size in percentage of full dataset. (0 - 100)
- name: num-augmentation-cycles
value: 1
displayName: Number of augmentation cycles
type: input.number
visibility: public
hint: Number of augmentation cycles, zero means no data augmentation
- name: preprocessing-parameters
value: |-
RandomBrightnessContrast:
p: 0.2
GaussianBlur:
p: 0.3
GaussNoise:
p: 0.4
HorizontalFlip:
p: 0.5
VerticalFlip:
p: 0.3
displayName: Preprocessing parameters
visibility: public
type: textarea.textarea
hint: 'See <a href="https://albumentations.ai/docs/api_reference/augmentations/transforms/" target="_blank">documentation</a> for more information on parameters.'
- name: cvat-num-classes
displayName: Number of classes
hint: Number of classes. In CVAT, this parameter will be pre-populated.
value: '10'
visibility: internal
- name: hyperparameters
displayName: Hyperparameters
visibility: public
type: textarea.textarea
value: |-
stage-1-epochs: 1 # Epochs for network heads
stage-2-epochs: 1 # Epochs for finetune layers
stage-3-epochs: 1 # Epochs for all layers
num_steps: 1000 # Num steps per epoch
hint: "See <a href='https://docs.onepanel.ai/docs/reference/cvat/built-in-models#maskrcnn-hyperparameters' target='_blank'>documentation</a> for more information on parameters."
- name: dump-format
value: cvat_coco
displayName: CVAT dump format
visibility: private
- name: cvat-finetune-checkpoint
value: ''
hint: Path to the last fine-tune checkpoint for this model in default object storage. Leave empty if this is the first time you're training this model.
displayName: Checkpoint path
visibility: public
- displayName: Node pool
hint: Name of node pool or group to run this workflow task
type: select.nodepool
visibility: public
name: sys-node-pool
value: {{.DefaultNodePoolOption}}
required: true
entrypoint: main
templates:
- dag:
tasks:
- name: preprocessing
template: preprocessing
- name: train-model
template: tensorflow
dependencies: [preprocessing]
arguments:
artifacts:
- name: data
from: "{{tasks.preprocessing.outputs.artifacts.processed-data}}"
name: main
- container:
args:
- |
pip install pycocotools scikit-image==0.16.2 && \
cd /mnt/src/train/workflows/maskrcnn-training && \
python -u main.py train --dataset=/mnt/data/datasets/train_set/ \
--model=workflow_maskrcnn \
--extras="{{workflow.parameters.hyperparameters}}" \
--ref_model_path="{{workflow.parameters.cvat-finetune-checkpoint}}" \
--num_classes="{{workflow.parameters.cvat-num-classes}}" \
--val_dataset=/mnt/data/datasets/eval_set/ \
--use_validation=True
command:
- sh
- -c
image: onepanel/dl:0.17.0
volumeMounts:
- mountPath: /mnt/data
name: processed-data
- mountPath: /mnt/output
name: output
workingDir: /mnt/src
sidecars:
- name: tensorboard
image: onepanel/dl:0.17.0
command: [ sh, -c ]
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
args: [ "tensorboard --logdir /mnt/output/tensorboard" ]
ports:
- containerPort: 6006
name: tensorboard
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
inputs:
artifacts:
- name: data
path: /mnt/data/datasets/
- name: models
path: /mnt/data/models/
optional: true
s3:
key: '{{workflow.parameters.cvat-finetune-checkpoint}}'
- git:
repo: https://github.com/onepanelio/templates.git
revision: v0.18.0
name: src
path: /mnt/src/train
name: tensorflow
outputs:
artifacts:
- name: model
optional: true
path: /mnt/output
- container:
args:
- |
pip install pycocotools && \
cd /mnt/src/preprocessing/workflows/albumentations-preprocessing && \
python -u main.py \
--data_aug_params="{{workflow.parameters.preprocessing-parameters}}" \
--val_split={{workflow.parameters.val-split}} \
--aug_steps={{workflow.parameters.num-augmentation-cycles}}
command:
- sh
- -c
image: onepanel/dl:0.17.0
volumeMounts:
- mountPath: /mnt/data
name: data
- mountPath: /mnt/output
name: processed-data
workingDir: /mnt/src
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
inputs:
artifacts:
- name: data
path: /mnt/data/datasets/
s3:
key: '{{workflow.parameters.cvat-annotation-path}}'
- git:
repo: https://github.com/onepanelio/templates.git
revision: v0.18.0
name: src
path: /mnt/src/preprocessing
name: preprocessing
outputs:
artifacts:
- name: processed-data
optional: true
path: /mnt/output
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi
- metadata:
name: processed-data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi
- metadata:
name: output
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi

View File

@@ -0,0 +1,207 @@
# source: https://github.com/onepanelio/templates/blob/master/workflows/pytorch-mnist-training/
arguments:
parameters:
- name: epochs
value: '10'
- displayName: Node pool
hint: Name of node pool or group to run this workflow task
type: select.nodepool
name: sys-node-pool
value: {{.DefaultNodePoolOption}}
visibility: public
required: true
entrypoint: main
templates:
- name: main
dag:
tasks:
- name: train-model
template: train-model
- name: train-model
# Indicates that we want to push files in /mnt/output to object storage
outputs:
artifacts:
- name: output
path: /mnt/output
optional: true
script:
image: onepanel/dl:0.17.0
command:
- python
- '-u'
source: |
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(model, device, train_loader, optimizer, epoch, batch_size, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
writer.add_scalar('training loss', loss.item(), epoch)
def test(model, device, test_loader, epoch, writer):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
loss = test_loss / len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
print('\nTest set: Average loss: {}, Accuracy: {}\n'.format(
loss, accuracy))
# Store metrics for this task
metrics = [
{'name': 'accuracy', 'value': accuracy},
{'name': 'loss', 'value': loss}
]
with open('/tmp/sys-metrics.json', 'w') as f:
json.dump(metrics, f)
def main(params):
writer = SummaryWriter(log_dir='/mnt/output/tensorboard')
use_cuda = torch.cuda.is_available()
torch.manual_seed(params['seed'])
device = torch.device('cuda' if use_cuda else 'cpu')
train_kwargs = {'batch_size': params['batch_size']}
test_kwargs = {'batch_size': params['test_batch_size']}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('/mnt/data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('/mnt/data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=params['lr'])
scheduler = StepLR(optimizer, step_size=1, gamma=params['gamma'])
for epoch in range(1, params['epochs'] + 1):
train(model, device, train_loader, optimizer, epoch, params['batch_size'], writer)
test(model, device, test_loader, epoch, writer)
scheduler.step()
# Save model
torch.save(model.state_dict(), '/mnt/output/model.pt')
writer.close()
if __name__ == '__main__':
params = {
'seed': 1,
'batch_size': 64,
'test_batch_size': 1000,
'epochs': {{workflow.parameters.epochs}},
'lr': 0.001,
'gamma': 0.7,
}
main(params)
volumeMounts:
# TensorBoard sidecar will automatically mount these volumes
# The `data` volume is mounted for saving datasets
# The `output` volume is mounted to save model output and share TensorBoard logs
- name: data
mountPath: /mnt/data
- name: output
mountPath: /mnt/output
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
sidecars:
- name: tensorboard
image: onepanel/dl:0.17.0
command:
- sh
- '-c'
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
args:
# Read logs from /mnt/output - this directory is auto-mounted from volumeMounts
- tensorboard --logdir /mnt/output/tensorboard
ports:
- containerPort: 6006
name: tensorboard
volumeClaimTemplates:
# Provision volumes for storing data and output
- metadata:
name: data
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 2Gi
- metadata:
name: output
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 2Gi

View File

@@ -0,0 +1,118 @@
# source: https://github.com/onepanelio/templates/blob/master/workflows/tensorflow-mnist-training/
arguments:
parameters:
- name: epochs
value: '10'
- displayName: Node pool
hint: Name of node pool or group to run this workflow task
type: select.nodepool
name: sys-node-pool
value: {{.DefaultNodePoolOption}}
visibility: public
required: true
entrypoint: main
templates:
- name: main
dag:
tasks:
- name: train-model
template: train-model
- name: train-model
# Indicates that we want to push files in /mnt/output to object storage
outputs:
artifacts:
- name: output
path: /mnt/output
optional: true
script:
image: onepanel/dl:0.17.0
command:
- python
- '-u'
source: |
import json
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=32, kernel_size=5, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=2),
tf.keras.layers.Conv2D(filters=64, kernel_size=5, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(units=124, activation='relu'),
tf.keras.layers.Dropout(rate=0.75),
tf.keras.layers.Dense(units=10, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Write TensorBoard logs to /mnt/output
log_dir = '/mnt/output/tensorboard/'
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(x=x_train,
y=y_train,
epochs={{workflow.parameters.epochs}},
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])
# Store metrics for this task
loss, accuracy = model.evaluate(x_test, y_test)
metrics = [
{'name': 'accuracy', 'value': accuracy},
{'name': 'loss', 'value': loss}
]
with open('/tmp/sys-metrics.json', 'w') as f:
json.dump(metrics, f)
# Save model
model.save('/mnt/output/model.h5')
volumeMounts:
# TensorBoard sidecar will automatically mount these volumes
# The `data` volume is mounted to support Keras datasets
# The `output` volume is mounted to save model output and share TensorBoard logs
- name: data
mountPath: /home/root/.keras/datasets
- name: output
mountPath: /mnt/output
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
sidecars:
- name: tensorboard
image: onepanel/dl:0.17.0
command:
- sh
- '-c'
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
args:
# Read logs from /mnt/output - this directory is auto-mounted from volumeMounts
- tensorboard --logdir /mnt/output/tensorboard
ports:
- containerPort: 6006
name: tensorboard
volumeClaimTemplates:
# Provision volumes for storing data and output
- metadata:
name: data
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 2Gi
- metadata:
name: output
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 2Gi

View File

@@ -0,0 +1,260 @@
# source: https://github.com/onepanelio/templates/blob/master/workflows/tf-object-detection-training/
arguments:
parameters:
- name: cvat-annotation-path
value: 'artifacts/{{workflow.namespace}}/annotations/'
hint: Path to annotated data (COCO format) in default object storage. In CVAT, this parameter will be pre-populated.
displayName: Dataset path
visibility: internal
- name: val-split
value: 10
displayName: Validation split size
type: input.number
visibility: public
hint: Enter validation set size in percentage of full dataset. (0 - 100)
- name: num-augmentation-cycles
value: 1
displayName: Number of augmentation cycles
type: input.number
visibility: public
hint: Number of augmentation cycles, zero means no data augmentation
- name: preprocessing-parameters
value: |-
RandomBrightnessContrast:
p: 0.2
GaussianBlur:
p: 0.3
GaussNoise:
p: 0.4
HorizontalFlip:
p: 0.5
VerticalFlip:
p: 0.3
displayName: Preprocessing parameters
visibility: public
type: textarea.textarea
hint: 'See <a href="https://albumentations.ai/docs/api_reference/augmentations/transforms/" target="_blank">documentation</a> for more information on parameters.'
- name: cvat-model
value: frcnn-res50-coco
displayName: Model
hint: TF Detection API's model to use for training.
type: select.select
visibility: public
options:
- name: 'Faster RCNN-ResNet 101-COCO'
value: frcnn-res101-coco
- name: 'Faster RCNN-ResNet 101-Low Proposal-COCO'
value: frcnn-res101-low
- name: 'Faster RCNN-ResNet 50-COCO'
value: frcnn-res50-coco
- name: 'Faster RCNN-NAS-COCO'
value: frcnn-nas-coco
- name: 'SSD MobileNet V1-COCO'
value: ssd-mobilenet-v1-coco2
- name: 'SSD MobileNet V2-COCO'
value: ssd-mobilenet-v2-coco
- name: 'SSDLite MobileNet-COCO'
value: ssdlite-mobilenet-coco
- name: cvat-num-classes
value: '10'
hint: Number of classes. In CVAT, this parameter will be pre-populated.
displayName: Number of classes
visibility: internal
- name: hyperparameters
value: |-
num_steps: 10000
displayName: Hyperparameters
visibility: public
type: textarea.textarea
hint: 'See <a href="https://docs.onepanel.ai/docs/reference/cvat/built-in-models#tfod-hyperparameters" target="_blank">documentation</a> for more information on parameters.'
- name: dump-format
value: cvat_coco
displayName: CVAT dump format
visibility: private
- name: cvat-finetune-checkpoint
value: ''
hint: Path to the last fine-tune checkpoint for this model in default object storage. Leave empty if this is the first time you're training this model.
displayName: Checkpoint path
visibility: public
- name: tf-image
value: tensorflow/tensorflow:1.13.1-py3
type: select.select
displayName: Select TensorFlow image
visibility: public
hint: Select the GPU image if you are running on a GPU node pool
options:
- name: 'TensorFlow 1.13.1 CPU Image'
value: 'tensorflow/tensorflow:1.13.1-py3'
- name: 'TensorFlow 1.13.1 GPU Image'
value: 'tensorflow/tensorflow:1.13.1-gpu-py3'
- displayName: Node pool
hint: Name of node pool or group to run this workflow task
type: select.nodepool
name: sys-node-pool
value: {{.DefaultNodePoolOption}}
visibility: public
required: true
entrypoint: main
templates:
- dag:
tasks:
- name: preprocessing
template: preprocessing
- name: train-model
template: tensorflow
dependencies: [preprocessing]
arguments:
artifacts:
- name: data
from: "{{tasks.preprocessing.outputs.artifacts.processed-data}}"
name: main
- container:
args:
- |
apt-get update && \
apt-get install -y python3-pip git wget unzip libglib2.0-0 libsm6 libxext6 libxrender-dev && \
pip install --upgrade pip && \
pip install pillow lxml Cython contextlib2 matplotlib numpy scipy pycocotools pyyaml test-generator && \
cd /mnt/src/tf/research && \
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim && \
mkdir -p /mnt/src/protoc && \
wget -P /mnt/src/protoc https://github.com/protocolbuffers/protobuf/releases/download/v3.10.1/protoc-3.10.1-linux-x86_64.zip && \
cd /mnt/src/protoc/ && \
unzip protoc-3.10.1-linux-x86_64.zip && \
cd /mnt/src/tf/research/ && \
/mnt/src/protoc/bin/protoc object_detection/protos/*.proto --python_out=. && \
cd /mnt/src/train/workflows/tf-object-detection-training && \
python main.py \
--extras="{{workflow.parameters.hyperparameters}}" \
--model="{{workflow.parameters.cvat-model}}" \
--num_classes="{{workflow.parameters.cvat-num-classes}}" \
--sys_finetune_checkpoint="{{workflow.parameters.cvat-finetune-checkpoint}}" \
--from_preprocessing=True
command:
- sh
- -c
image: '{{workflow.parameters.tf-image}}'
volumeMounts:
- mountPath: /mnt/data
name: processed-data
- mountPath: /mnt/output
name: output
workingDir: /mnt/src
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
inputs:
artifacts:
- name: data
path: /mnt/data/datasets/
- name: models
path: /mnt/data/models/
optional: true
s3:
key: '{{workflow.parameters.cvat-finetune-checkpoint}}'
- git:
repo: https://github.com/tensorflow/models.git
revision: v1.13.0
name: src
path: /mnt/src/tf
- git:
repo: https://github.com/onepanelio/templates.git
revision: v0.18.0
name: tsrc
path: /mnt/src/train
name: tensorflow
outputs:
artifacts:
- name: model
optional: true
path: /mnt/output
sidecars:
- name: tensorboard
image: '{{workflow.parameters.tf-image}}'
command:
- sh
- '-c'
env:
- name: ONEPANEL_INTERACTIVE_SIDECAR
value: 'true'
args:
# Read logs from /mnt/output - this directory is auto-mounted from volumeMounts
- tensorboard --logdir /mnt/output/checkpoints/
ports:
- containerPort: 6006
name: tensorboard
- container:
args:
- |
pip install --upgrade pip &&\
pip install opencv-python albumentations tqdm pyyaml pycocotools && \
cd /mnt/src/preprocessing/workflows/albumentations-preprocessing && \
python -u main.py \
--data_aug_params="{{workflow.parameters.preprocessing-parameters}}" \
--format="tfrecord" \
--val_split={{workflow.parameters.val-split}} \
--aug_steps={{workflow.parameters.num-augmentation-cycles}}
command:
- sh
- -c
image: '{{workflow.parameters.tf-image}}'
volumeMounts:
- mountPath: /mnt/data
name: data
- mountPath: /mnt/output
name: processed-data
workingDir: /mnt/src
nodeSelector:
{{.NodePoolLabel}}: '{{workflow.parameters.sys-node-pool}}'
inputs:
artifacts:
- name: data
path: /mnt/data/datasets/
s3:
key: '{{workflow.parameters.cvat-annotation-path}}'
- git:
repo: https://github.com/onepanelio/templates.git
revision: v0.18.0
name: src
path: /mnt/src/preprocessing
name: preprocessing
outputs:
artifacts:
- name: processed-data
optional: true
path: /mnt/output
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi
- metadata:
name: processed-data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi
- metadata:
name: output
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Gi

View File

@@ -0,0 +1,134 @@
containers:
- name: cvat-db
image: postgres:10-alpine
env:
- name: POSTGRES_USER
value: root
- name: POSTGRES_DB
value: cvat
- name: POSTGRES_HOST_AUTH_METHOD
value: trust
- name: PGDATA
value: /var/lib/psql/data
ports:
- containerPort: 5432
name: tcp
volumeMounts:
- name: db
mountPath: /var/lib/psql
- name: cvat-redis
image: redis:4.0-alpine
ports:
- containerPort: 6379
name: tcp
- name: cvat
image: onepanel/cvat:0.18.0_cvat.1.0.0
env:
- name: DJANGO_MODWSGI_EXTRA_ARGS
value: ""
- name: ALLOWED_HOSTS
value: '*'
- name: CVAT_REDIS_HOST
value: localhost
- name: CVAT_POSTGRES_HOST
value: localhost
- name: CVAT_SHARE_URL
value: /cvat/data
- name: CVAT_SHARE_DIR
value: /share
- name: CVAT_DATA_DIR
value: /cvat/data
- name: CVAT_MEDIA_DATA_DIR
value: /cvat/data/data
- name: CVAT_KEYS_DIR
value: /cvat/data/keys
- name: CVAT_MODELS_DIR
value: /cvat/data/models
- name: CVAT_LOGS_DIR
value: /cvat/logs
- name: CVAT_ANNOTATIONS_OBJECT_STORAGE_PREFIX
value: 'artifacts/$(ONEPANEL_RESOURCE_NAMESPACE)/annotations/'
- name: CVAT_ONEPANEL_WORKFLOWS_LABEL
value: 'key=used-by,value=cvat'
- name: NVIDIA_VISIBLE_DEVICES
value: all
- name: NVIDIA_DRIVER_CAPABILITIES
value: compute,utility
- name: NVIDIA_REQUIRE_CUDA
value: "cuda>=10.0 brand=tesla,driver>=384,driver<385 brand=tesla,driver>=410,driver<411"
- name: ONEPANEL_MAIN_CONTAINER
value: 'true'
ports:
- containerPort: 8080
name: http
volumeMounts:
- name: cvat-data
mountPath: /cvat
- name: share
mountPath: /share
- name: sys-namespace-config
mountPath: /etc/onepanel
readOnly: true
- name: cvat-ui
image: onepanel/cvat-ui:0.18.0_cvat.1.0.0
ports:
- containerPort: 80
name: http
- name: sys-filesyncer
image: onepanel/filesyncer:0.18.0
imagePullPolicy: Always
args:
- server
- -server-prefix=/sys/filesyncer
volumeMounts:
- name: share
mountPath: /share
- name: sys-namespace-config
mountPath: /etc/onepanel
readOnly: true
ports:
- name: cvat-ui
port: 80
protocol: TCP
targetPort: 80
- name: cvat
port: 8080
protocol: TCP
targetPort: 8080
- name: fs
port: 8888
protocol: TCP
targetPort: 8888
routes:
- match:
- uri:
prefix: /sys/filesyncer
route:
- destination:
port:
number: 8888
- match:
- uri:
regex: /api/.*|/git/.*|/tensorflow/.*|/onepanelio/.*|/tracking/.*|/auto_annotation/.*|/analytics/.*|/static/.*|/admin/.*|/documentation/.*|/dextr/.*|/reid/.*
- queryParams:
id:
regex: \d+.*
route:
- destination:
port:
number: 8080
- match:
- uri:
prefix: /
route:
- destination:
port:
number: 80
volumeClaimTemplates:
- metadata:
name: db
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 20Gi

View File

@@ -0,0 +1,99 @@
containers:
- name: jupyterlab
image: onepanel/dl:0.17.0
command: ["/bin/bash", "-c", "pip install onepanel-sdk && start.sh LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 jupyter lab --LabApp.token='' --LabApp.allow_remote_access=True --LabApp.allow_origin=\"*\" --LabApp.disable_check_xsrf=True --LabApp.trust_xheaders=True --LabApp.base_url=/ --LabApp.tornado_settings='{\"headers\":{\"Content-Security-Policy\":\"frame-ancestors * 'self'\"}}' --notebook-dir='/data' --allow-root"]
workingDir: /data
env:
- name: tornado
value: "'{'headers':{'Content-Security-Policy':\"frame-ancestors\ *\ 'self'\"}}'"
- name: TENSORBOARD_PROXY_URL
value: '//$(ONEPANEL_RESOURCE_UID)--$(ONEPANEL_RESOURCE_NAMESPACE).$(ONEPANEL_DOMAIN)/tensorboard'
ports:
- containerPort: 8888
name: jupyterlab
- containerPort: 6006
name: tensorboard
- containerPort: 8080
name: nni
volumeMounts:
- name: data
mountPath: /data
lifecycle:
postStart:
exec:
command:
- /bin/sh
- -c
- >
condayml="/data/.environment.yml";
jupytertxt="/data/.jupexported.txt";
if [ -f "$condayml" ]; then conda env update -f $condayml; fi;
if [ -f "$jupytertxt" ]; then cat $jupytertxt | xargs -n 1 jupyter labextension install --no-build && jupyter lab build --minimize=False; fi;
preStop:
exec:
command:
- /bin/sh
- -c
- >
conda env export > /data/.environment.yml -n base;
jupyter labextension list 1>/dev/null 2> /data/.jup.txt;
cat /data/.jup.txt | sed -n '2,$p' | awk 'sub(/v/,"@", $2){print $1$2}' > /data/.jupexported.txt;
- name: sys-filesyncer
image: onepanel/filesyncer:0.18.0
imagePullPolicy: Always
args:
- server
- -host=localhost:8889
- -server-prefix=/sys/filesyncer
volumeMounts:
- name: data
mountPath: /data
- name: sys-namespace-config
mountPath: /etc/onepanel
readOnly: true
ports:
- name: jupyterlab
port: 80
protocol: TCP
targetPort: 8888
- name: tensorboard
port: 6006
protocol: TCP
targetPort: 6006
- name: nni
port: 8080
protocol: TCP
targetPort: 8080
- name: fs
port: 8889
protocol: TCP
targetPort: 8889
routes:
- match:
- uri:
prefix: /sys/filesyncer
route:
- destination:
port:
number: 8889
- match:
- uri:
prefix: /tensorboard
route:
- destination:
port:
number: 6006
- match:
- uri:
prefix: /nni
route:
- destination:
port:
number: 8080
- match:
- uri:
prefix: /
route:
- destination:
port:
number: 80

View File

@@ -0,0 +1,65 @@
containers:
- name: vscode
image: onepanel/vscode:1.0.0
command: ["/bin/bash", "-c", "pip install onepanel-sdk && /usr/bin/entrypoint.sh --bind-addr 0.0.0.0:8080 --auth none ."]
ports:
- containerPort: 8080
name: vscode
volumeMounts:
- name: data
mountPath: /data
lifecycle:
postStart:
exec:
command:
- /bin/sh
- -c
- >
condayml="/data/.environment.yml";
vscodetxt="/data/.vscode-extensions.txt";
if [ -f "$condayml" ]; then conda env update -f $condayml; fi;
if [ -f "$vscodetxt" ]; then cat $vscodetxt | xargs -n 1 code-server --install-extension; fi;
preStop:
exec:
command:
- /bin/sh
- -c
- >
conda env export > /data/.environment.yml -n base;
code-server --list-extensions | tail -n +2 > /data/.vscode-extensions.txt;
- name: sys-filesyncer
image: onepanel/filesyncer:0.18.0
imagePullPolicy: Always
args:
- server
- -server-prefix=/sys/filesyncer
volumeMounts:
- name: data
mountPath: /data
- name: sys-namespace-config
mountPath: /etc/onepanel
readOnly: true
ports:
- name: vscode
port: 8080
protocol: TCP
targetPort: 8080
- name: fs
port: 8888
protocol: TCP
targetPort: 8888
routes:
- match:
- uri:
prefix: /sys/filesyncer
route:
- destination:
port:
number: 8888
- match:
- uri:
prefix: /
route:
- destination:
port:
number: 8080