Perf(slice): Optimize iteration function parameters and add test cases (#587)

- Modify the iteration function parameters in the UniqueBy, GroupByMap, and Keyify functions to use index access for collection elements.
- Optimize parameter naming in the GroupByMap function to improve code readability.
- Add test cases for the GroupByMap function to cover different types of inputs.

Co-authored-by: ShuQingZai <overbeck.jack@outlook.com>
This commit is contained in:
overbeck
2025-02-17 07:10:10 +08:00
committed by GitHub
parent 12a8b78b75
commit 0fa0632c0f
2 changed files with 43 additions and 7 deletions

View File

@@ -38,8 +38,8 @@ func UniqMap[T any, R comparable](collection []T, iteratee func(item T, index in
result := make([]R, 0, len(collection))
seen := make(map[R]struct{}, len(collection))
for i, item := range collection {
r := iteratee(item, i)
for i := range collection {
r := iteratee(collection[i], i)
if _, ok := seen[r]; !ok {
result = append(result, r)
seen[r] = struct{}{}
@@ -189,11 +189,12 @@ func GroupBy[T any, U comparable, Slice ~[]T](collection Slice, iteratee func(it
}
// GroupByMap returns an object composed of keys generated from the results of running each element of collection through iteratee.
func GroupByMap[T any, K comparable, V any](arr []T, iteratee func(item T) (K, V)) map[K][]V {
func GroupByMap[T any, K comparable, V any](collection []T, iteratee func(item T) (K, V)) map[K][]V {
result := map[K][]V{}
for _, item := range arr {
k, v := iteratee(item)
for i := range collection {
k, v := iteratee(collection[i])
result[k] = append(result[k], v)
}
@@ -420,8 +421,8 @@ func FilterSliceToMap[T any, K comparable, V any](collection []T, transform func
func Keyify[T comparable, Slice ~[]T](collection Slice) map[T]struct{} {
result := make(map[T]struct{}, len(collection))
for _, item := range collection {
result[item] = struct{}{}
for i := range collection {
result[collection[i]] = struct{}{}
}
return result

View File

@@ -268,6 +268,41 @@ func TestGroupByMap(t *testing.T) {
1: {"1", "4"},
2: {"2", "5"},
})
type myInt int
type myInts []myInt
result2 := GroupByMap(myInts{1, 0, 2, 3, 4, 5}, func(i myInt) (int, string) {
return int(i % 3), strconv.Itoa(int(i))
})
is.Equal(len(result2), 3)
is.Equal(result2, map[int][]string{
0: {"0", "3"},
1: {"1", "4"},
2: {"2", "5"},
})
type product struct {
ID int64
CategoryID int64
}
products := []product{
{ID: 1, CategoryID: 1},
{ID: 2, CategoryID: 1},
{ID: 3, CategoryID: 2},
{ID: 4, CategoryID: 3},
{ID: 5, CategoryID: 3},
}
result3 := GroupByMap(products, func(item product) (int64, string) {
return item.CategoryID, "Product " + strconv.FormatInt(item.ID, 10)
})
is.Equal(len(result3), 3)
is.Equal(result3, map[int64][]string{
1: {"Product 1", "Product 2"},
2: {"Product 3"},
3: {"Product 4", "Product 5"},
})
}
func TestChunk(t *testing.T) {