Compare commits

..

38 Commits

Author SHA1 Message Date
Blake Blackshear
0f66a8cb41 call the restart function and handle errors better in the detection process 2020-03-01 18:45:07 -06:00
Blake Blackshear
04ef6ac30e clarify mqtt password readme 2020-03-01 18:45:07 -06:00
Blake Blackshear
ab42a9625d readme updates 2020-03-01 07:47:22 -06:00
Blake Blackshear
30ad0e30f8 allow mqtt password to be set by env var 2020-03-01 07:23:56 -06:00
Blake Blackshear
7bad89c9bf update benchmark script to mirror actual frigate use 2020-03-01 07:16:56 -06:00
Blake Blackshear
f077c397f4 improve detection processing and restart when stuck 2020-03-01 07:16:49 -06:00
Blake Blackshear
cc729d83a8 handle ffmpeg process failures in the camera process itself 2020-02-26 19:02:12 -06:00
Blake Blackshear
c520b81e49 add a few print statements for debugging 2020-02-25 20:37:12 -06:00
Blake Blackshear
9c304391c0 dont kill the camera process from the main process 2020-02-25 20:36:30 -06:00
Blake Blackshear
9a12b02d22 increase the buffer size a bit 2020-02-24 20:05:30 -06:00
Blake Blackshear
7686c510b3 add a few more metrics to debug 2020-02-23 18:11:39 -06:00
Blake Blackshear
2f5e322d3c cleanup the plasma store when finished with a frame 2020-02-23 18:11:08 -06:00
Blake Blackshear
1cd4c12104 dont redirect stdout for plasma store 2020-02-23 15:53:17 -06:00
Blake Blackshear
1a8b034685 reset detection fps 2020-02-23 15:53:00 -06:00
Blake Blackshear
da6dc03a57 dont change dictionary while iterating 2020-02-23 11:18:00 -06:00
Blake Blackshear
7fa3b70d2d allow specifying the frame size in the config instead of detecting 2020-02-23 07:56:14 -06:00
Blake Blackshear
1fc5a2bfd4 ensure missing objects are expired even when other object types are in the frame 2020-02-23 07:55:51 -06:00
Blake Blackshear
7e84da7dad Fix watchdog last_frame calculation 2020-02-23 07:55:16 -06:00
Blake Blackshear
128be72e28 cleanup 2020-02-22 09:15:29 -06:00
Blake Blackshear
aaddedc95c update docs and add back benchmark 2020-02-22 09:10:37 -06:00
Blake Blackshear
ba919fb439 fix watchdog 2020-02-22 09:10:37 -06:00
Blake Blackshear
b1d563f3c4 check avg wait before dropping frames 2020-02-22 09:10:37 -06:00
Blake Blackshear
204d8af5df fix watchdog restart 2020-02-22 09:10:37 -06:00
Blake Blackshear
b507a73d79 improve watchdog and coral fps tracking 2020-02-22 09:10:37 -06:00
Blake Blackshear
66eeb8b5cb dont log http requests 2020-02-22 09:10:37 -06:00
Blake Blackshear
efa67067c6 cleanup 2020-02-22 09:10:37 -06:00
Blake Blackshear
aeb036f1a4 add models and convert speed to ms 2020-02-22 09:10:37 -06:00
Blake Blackshear
74c528f9dc add watchdog for camera processes 2020-02-22 09:10:34 -06:00
Blake Blackshear
f2d54bec43 cleanup old code 2020-02-22 09:09:36 -06:00
Blake Blackshear
f07d57741e add a min_fps option 2020-02-22 09:06:46 -06:00
Blake Blackshear
2c1ec19f98 check plasma store and consolidate frame drawing 2020-02-22 09:06:46 -06:00
Blake Blackshear
6a9027c002 split into separate processes 2020-02-22 09:06:43 -06:00
Blake Blackshear
60c15e4419 update tflite to 2.1.0 2020-02-22 09:05:26 -06:00
Blake Blackshear
03dbf600aa refactor some classes into new files 2020-02-22 09:05:26 -06:00
Blake Blackshear
fbbb79b31b tweak process handoff 2020-02-22 09:05:26 -06:00
Blake Blackshear
496c6bc6c4 Mostly working detection in a separate process 2020-02-22 09:05:26 -06:00
Blake Blackshear
869a81c944 read from ffmpeg 2020-02-22 09:05:26 -06:00
Blake Blackshear
5b1884cfb3 WIP: revamp to incorporate motion 2020-02-22 09:05:26 -06:00
34 changed files with 1296 additions and 3899 deletions

View File

@@ -1,55 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Version of frigate**
What version are you using?
**Config file**
Include your full config file wrapped in back ticks.
```
config here
```
**Logs**
```
Include relevant log output here
```
**Frigate debug stats**
```
Output from frigate's /debug/stats endpoint
```
**FFprobe from your camera**
Run the following command and paste output below
```
ffprobe <stream_url>
```
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]
**Camera Info:**
- Manufacturer: [e.g. Dahua]
- Model: [e.g. IPC-HDW5231R-ZE]
- Resolution: [e.g. 720p]
- FPS: [e.g. 5]
**Additional context**
Add any other context about the problem here.

60
Dockerfile Executable file
View File

@@ -0,0 +1,60 @@
FROM ubuntu:18.04
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt -qq update && apt -qq install --no-install-recommends -y \
software-properties-common \
# apt-transport-https ca-certificates \
build-essential \
gnupg wget unzip \
# libcap-dev \
&& add-apt-repository ppa:deadsnakes/ppa -y \
&& apt -qq install --no-install-recommends -y \
python3.7 \
python3.7-dev \
python3-pip \
ffmpeg \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
&& python3.7 -m pip install -U wheel setuptools \
&& python3.7 -m pip install -U \
opencv-python-headless \
# python-prctl \
numpy \
imutils \
scipy \
&& python3.7 -m pip install -U \
SharedArray \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
pyarrow \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
&& apt -qq update \
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
&& apt -qq install --no-install-recommends -y \
libedgetpu1-max \
## Tensorflow lite (python 3.7 only)
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \
unzip /cpu_model.zip detect.tflite -d / && \
mv /detect.tflite /cpu_model.tflite && \
rm /cpu_model.zip
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
CMD ["python3.7", "-u", "detect_objects.py"]

674
LICENSE
View File

@@ -1,21 +1,661 @@
The MIT License
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (c) 2020 Blake Blackshear
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Preamble
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View File

@@ -1,37 +0,0 @@
default_target: amd64_frigate
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate:
docker build --tag frigate-base --build-arg ARCH=amd64 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate:
docker build --tag frigate-base --build-arg ARCH=aarch64 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate:
docker build --tag frigate-base --build-arg ARCH=armv7 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate

367
README.md
View File

@@ -1,7 +1,7 @@
# Frigate - NVR With Realtime Object Detection for IP Cameras
# Frigate - Realtime Object Detection for IP Cameras
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
- Uses a very low overhead motion detection to determine where to run object detection
@@ -15,23 +15,18 @@ Use of a [Google Coral Accelerator](https://coral.ai/products/) is optional, but
You see multiple bounding boxes because it draws bounding boxes from all frames in the past 1 second where a person was detected. Not all of the bounding boxes were from the current frame.
[![](http://img.youtube.com/vi/nqHbCtyo4dY/0.jpg)](http://www.youtube.com/watch?v=nqHbCtyo4dY "Frigate")
## Documentation
- [Camera Specific Docs](docs/CAMERAS.md)
- [Hardware Acceleration](docs/HWACCEL.md)
## Getting Started
Run the container with
```bash
docker run --rm \
--name frigate \
--privileged \
--shm-size=100m \ # only needed with large numbers of high res cameras
--shm-size=512m \ # should work for a 2-3 cameras
-v /dev/bus/usb:/dev/bus/usb \
-v <path_to_config_dir>:/config:ro \
-v /etc/localtime:/etc/localtime:ro \
-p 5000:5000 \
-e FRIGATE_RTSP_PASSWORD='password' \
blakeblackshear/frigate:0.7.0-amd64
blakeblackshear/frigate:stable
```
Example docker-compose:
@@ -40,96 +35,41 @@ Example docker-compose:
container_name: frigate
restart: unless-stopped
privileged: true
shm_size: '100m' # only needed with large numbers of high res cameras
image: blakeblackshear/frigate:0.7.0-amd64
shm_size: '1g' # should work for 5-7 cameras
image: blakeblackshear/frigate:stable
volumes:
- /dev/bus/usb:/dev/bus/usb
- /etc/localtime:/etc/localtime:ro
- <path_to_config>:/config
- <path_to_directory_for_clips>:/clips
ports:
- "5000:5000"
environment:
FRIGATE_RTSP_PASSWORD: "password"
healthcheck:
test: ["CMD", "wget" , "-q", "-O-", "http://localhost:5000"]
interval: 30s
timeout: 10s
retries: 5
start_period: 3m
```
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and camera specific info can be found [here](docs/CAMERAS.md).
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
### Calculating shm-size
The default shm-size of 64m should be fine for most setups. If you start seeing segfault errors, it could be because you have too many high resolution cameras and you need to specify a higher shm size.
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
You can calculate the necessary shm-size for each camera with the following formula:
```
(width * height * 3 + 270480)/1048576 = <shm size in mb>
```
## Recommended Hardware
|Name|Inference Speed|Notes|
|----|---------------|-----|
|Atomic Pi|16ms|Best option for a dedicated low power board with a small number of cameras.|
|Intel NUC NUC7i3BNK|8-10ms|Best possible performance. Can handle 7+ cameras at 5fps depending on typical amounts of motion.|
|BMAX B2 Plus|10-12ms|Good balance of performance and cost. Also capable of running many other services at the same time as frigate.|
|Minisforum GK41|9-10ms|Great alternative to a NUC. Easily handiles 4 1080p cameras.|
|Raspberry Pi 3B (32bit)|60ms|Can handle a small number of cameras, but the detection speeds are slow|
|Raspberry Pi 4 (32bit)|15-20ms|Can handle a small number of cameras. The 2GB version runs fine.|
|Raspberry Pi 4 (64bit)|10-15ms|Can handle a small number of cameras. The 2GB version runs fine.|
Users have reported varying success in getting frigate to run in a VM. In some cases, the virtualization layer introduces a significant delay in communication with the Coral. If running virtualized in Proxmox, pass the USB card/interface to the virtual machine not the USB ID for faster inference speed.
Debug info is available at `http://localhost:5000/debug/stats`
## Integration with HomeAssistant
Setup a camera, binary_sensor, sensor and optionally automation as shown for each camera you define in frigate. Replace <camera_name> with the camera name as defined in the frigate `config.yml` (The `frigate_coral_fps` and `frigate_coral_inference` sensors only need to be defined once)
```
camera:
- name: <camera_name> Last Person
- name: Camera Last Person
platform: mqtt
topic: frigate/<camera_name>/person/snapshot
- name: <camera_name> Last Car
- name: Camera Last Car
platform: mqtt
topic: frigate/<camera_name>/car/snapshot
binary_sensor:
- name: <camera_name> Person
- name: Camera Person
platform: mqtt
state_topic: "frigate/<camera_name>/person"
device_class: motion
availability_topic: "frigate/available"
sensor:
- platform: rest
name: Frigate Debug
resource: http://localhost:5000/debug/stats
scan_interval: 5
json_attributes:
- <camera_name>
- detection_fps
- detectors
value_template: 'OK'
- platform: template
sensors:
<camera_name>_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["fps"] }}'
unit_of_measurement: 'FPS'
<camera_name>_skipped_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["skipped_fps"] }}'
unit_of_measurement: 'FPS'
<camera_name>_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["<camera_name>"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["detectors"]["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
automation:
- alias: Alert me if a person is detected while armed away
trigger:
@@ -148,263 +88,40 @@ automation:
data:
photo:
- url: http://<ip>:5000/<camera_name>/person/best.jpg
caption: A person was detected.
caption: A person was detected.
sensor:
- platform: rest
name: Frigate Debug
resource: http://localhost:5000/debug/stats
scan_interval: 5
json_attributes:
- back
- coral
value_template: 'OK'
- platform: template
sensors:
back_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}'
unit_of_measurement: 'FPS'
back_skipped_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}'
unit_of_measurement: 'FPS'
back_detection_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_fps:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
unit_of_measurement: 'FPS'
frigate_coral_inference:
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
unit_of_measurement: 'ms'
```
## HTTP Endpoints
A web server is available on port 5000 with the following endpoints.
### `/<camera_name>`
An mjpeg stream for debugging. Keep in mind the mjpeg endpoint is for debugging only and will put additional load on the system when in use.
You can access a higher resolution mjpeg stream by appending `h=height-in-pixels` to the endpoint. For example `http://localhost:5000/back?h=1080`. You can also increase the FPS by appending `fps=frame-rate` to the URL such as `http://localhost:5000/back?fps=10` or both with `?fps=10&h=1000`
### `/<camera_name>/<object_name>/best.jpg[?h=300&crop=1]`
The best snapshot for any object type. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
- `crop=1`: crops the image to the region of the detection rather than returning the entire image
### `/<camera_name>/latest.jpg[?h=300]`
The most recent frame that frigate has finished processing. It is a full resolution image by default.
Example parameters:
- `h=300`: resizes the image to 300 pixes tall
### `/debug/stats`
Contains some granular debug info that can be used for sensors in HomeAssistant. See details below.
## MQTT Messages
These are the MQTT messages generated by Frigate. The default topic_prefix is `frigate`, but can be changed in the config file.
### frigate/available
Designed to be used as an availability topic with HomeAssistant. Possible message are:
"online": published when frigate is running (on startup)
"offline": published right before frigate stops
### frigate/<camera_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected.
### frigate/<camera_name>/<object_name>/snapshot
Publishes a jpeg encoded frame of the detected object type. When the object is no longer detected, the highest confidence image is published or the original image
is published again.
The height and crop of snapshots can be configured as shown in the example config.
### frigate/<camera_name>/events/start
Message published at the start of any tracked object. JSON looks as follows:
```json
{
"label": "person",
"score": 0.87890625,
"box": [
95,
155,
581,
1182
],
"area": 499122,
"region": [
0,
132,
1080,
1212
],
"frame_time": 1600208805.60284,
"centroid": [
338,
668
],
"id": "1600208805.60284-k1l43p",
"start_time": 1600208805.60284,
"top_score": 0.87890625,
"zones": [],
"score_history": [
0.87890625
],
"computed_score": 0.0,
"false_positive": true
}
```
### frigate/<camera_name>/events/end
Same as `frigate/<camera_name>/events/start`, but with an `end_time` property as well.
### frigate/<zone_name>/<object_name>
Publishes `ON` or `OFF` and is designed to be used a as a binary sensor in HomeAssistant for whether or not that object type is detected in the zone.
## Understanding min_score and threshold filters
`min_score` defines the minimum score for Frigate to begin tracking a detected object. Any single detection below `min_score` will be ignored as a false positive. `threshold` is based on the median of the history of scores for a tracked object. Consider the following frames when `min_score` is set to 0.6 and threshold is set to 0.85:
| Frame | Current Score | Score History | Computed Score | Detected Object |
| --- | --- | --- | --- | --- |
| 1 | 0.7 | 0.0, 0, 0.7 | 0.0 | No
| 2 | 0.55 | 0.0, 0.7, 0.0 | 0.0 | No
| 3 | 0.85 | 0.7, 0.0, 0.85 | 0.7 | No
| 4 | 0.90 | 0.7, 0.85, 0.95, 0.90 | 0.875 | Yes
| 5 | 0.88 | 0.7, 0.85, 0.95, 0.90, 0.88 | 0.88 | Yes
| 6 | 0.95 | 0.7, 0.85, 0.95, 0.90, 0.88, 0.95 | 0.89 | Yes
In frame 2, the score is below the `min_score` value, so frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
## Using a custom model or labels
## Using a custom model
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
- CPU Model: `/cpu_model.tflite`
- EdgeTPU Model: `/edgetpu_model.tflite`
- Labels: `/labelmap.txt`
### Customizing the Labelmap
The labelmap can be customized to your needs. A common reason to do this is to combine multiple object types that are easily confused when you don't need to be as granular such as car/truck. You must retain the same number of labels, but you can change the names. To change:
- Download the [COCO labelmap](https://dl.google.com/coral/canned_models/coco_labels.txt)
- Modify the label names as desired. For example, change `7 truck` to `7 car`
- Mount the new file at `/labelmap.txt` in the container with an additional volume
```
-v ./config/labelmap.txt:/labelmap.txt
```
## Recording Clips
**Note**: Previous versions of frigate included `-vsync drop` in input parameters. This is not compatible with FFmpeg's segment feature and must be removed from your input parameters if you have overrides set.
Frigate can save video clips without any CPU overhead for encoding by simply copying the stream directly with FFmpeg. It leverages FFmpeg's segment functionality to maintain a cache of 90 seconds of video for each camera. The cache files are written to disk at /cache and do not introduce memory overhead. When an object is being tracked, it will extend the cache to ensure it can assemble a clip when the event ends. Once the event ends, it again uses FFmpeg to assemble a clip by combining the video clips without any encoding by the CPU. Assembled clips are are saved to the /clips directory along with a json file containing the current information about the tracked object.
### Global Configuration Options
- `max_seconds`: This limits the size of the cache when an object is being tracked. If an object is stationary and being tracked for a long time, the cache files will expire and this value will be the maximum clip length for the *end* of the event. For example, if this is set to 300 seconds and an object is being tracked for 600 seconds, the clip will end up being the last 300 seconds. Defaults to 300 seconds.
### Per-camera Configuration Options
- `pre_capture`: Defines how much time should be included in the clip prior to the beginning of the event. Defaults to 30 seconds.
- `objects`: List of object types to save clips for. Object types here must be listed for tracking at the camera or global configuration. Defaults to all tracked objects.
## Detectors Configuration
Frigate attempts to detect your Coral device automatically. If you have multiple Coral devices or a version that is not detected automatically, you can specify using the `detectors` config option as shown in the example config.
## Masks and limiting detection to a certain area
The mask works by looking at the bottom center of any bounding box (first image, red dot below) and comparing that to your mask. If that red dot falls on an area of your mask that is black, the detection (and motion) will be ignored. The mask in the second image would limit detection on this camera to only objects that are in the front yard and not the street.
<a href="docs/example-mask-check-point.png"><img src="docs/example-mask-check-point.png" height="300"></a>
<a href="docs/example-mask.bmp"><img src="docs/example-mask.bmp" height="300"></a>
<a href="docs/example-mask-overlay.png"><img src="docs/example-mask-overlay.png" height="300"></a>
The following types of masks are supported:
- `base64`: Base64 encoded image file
- `poly`: List of x,y points like zone configuration
- `image`: Path to an image file in the config directory
`base64` and `image` masks must be the same aspect ratio as your camera.
## Zones
Zones allow you to define a specific area of the frame and apply additional filters for object types so you can determine whether or not an object is within a particular area. Zones cannot have the same name as a camera. If desired, a single zone can include multiple cameras if you have multiple cameras covering the same area. See the sample config for details on how to configure.
During testing, `draw_zones` can be set in the config to tell frigate to draw the zone on the frames so you can adjust as needed. The zone line will increase in thickness when any object enters the zone.
![Zone Example](docs/zone_example.jpg)
## Debug Info
```jsonc
{
/* Per Camera Stats */
"back": {
/***************
* Frames per second being consumed from your camera. If this is higher
* than it is supposed to be, you should set -r FPS in your input_args.
* camera_fps = process_fps + skipped_fps
***************/
"camera_fps": 5.0,
/***************
* Number of times detection is run per second. This can be higher than
* your camera FPS because frigate often looks at the same frame multiple times
* or in multiple locations
***************/
"detection_fps": 1.5,
/***************
* PID for the ffmpeg process that consumes this camera
***************/
"ffmpeg_pid": 27,
/***************
* Timestamps of frames in various parts of processing
***************/
"frame_info": {
/***************
* Timestamp of the frame frigate is running object detection on.
***************/
"detect": 1596994991.91426,
/***************
* Timestamp of the frame frigate is processing detected objects on.
* This is where MQTT messages are sent, zones are checked, etc.
***************/
"process": 1596994991.91426,
/***************
* Timestamp of the frame frigate last read from ffmpeg.
***************/
"read": 1596994991.91426
},
/***************
* PID for the process that runs detection for this camera
***************/
"pid": 34,
/***************
* Frames per second being processed by frigate.
***************/
"process_fps": 5.1,
/***************
* Timestamp when the detection process started looking for a frame. If this value stays constant
* for a long time, that means there aren't any frames in the frame queue.
***************/
"read_start": 1596994991.943814,
/***************
* Frames per second skip for processing by frigate.
***************/
"skipped_fps": 0.0
},
/***************
* Sum of detection_fps across all cameras and detectors.
* This should be the sum of all detection_fps values from cameras.
***************/
"detection_fps": 5.0,
/* Detectors Stats */
"detectors": {
"coral": {
/***************
* Timestamp when object detection started. If this value stays non-zero and constant
* for a long time, that means the detection process is stuck.
***************/
"detection_start": 0.0,
/***************
* Time spent running object detection in milliseconds.
***************/
"inference_speed": 10.48,
/***************
* PID for the shared process that runs object detection on the Coral.
***************/
"pid": 25321
}
}
}
```
## Tips
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed. Not as effective, but you can also modify the `take_frame` [configuration](config/config.example.yml) for each camera to only analyze every other frame, or every third frame, etc.
- Hard code the resolution of each camera in your config if you are having difficulty starting frigate or if the initial ffprobe for camerea resolution fails or returns incorrect info. Example:
```
cameras:
back:
ffmpeg:
input: rtsp://<camera>
height: 1080
width: 1920
```
- Additional logging is available in the docker container - You can view the logs by running `docker logs -t frigate`
- Object configuration - Tracked objects types, sizes and thresholds can be defined globally and/or on a per camera basis. The global and camera object configuration is *merged*. For example, if you defined tracking person, car, and truck globally but modified your backyard camera to only track person, the global config would merge making the effective list for the backyard camera still contain person, car and truck. If you want precise object tracking per camera, best practice to put a minimal list of objects at the global level and expand objects on a per camera basis. Object threshold and area configuration will be used first from the camera object config (if defined) and then from the global config. See the [example config](config/config.example.yml) for more information.
## Troubleshooting
### "ffmpeg didnt return a frame. something is wrong"
Turn on logging for the camera by overriding the global_args and setting the log level to `info`:
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- info
```
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed

View File

@@ -3,7 +3,7 @@ from statistics import mean
import multiprocessing as mp
import numpy as np
import datetime
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
@@ -11,7 +11,7 @@ labels = load_labels('/labelmap.txt')
######
# Minimal same process runner
######
# object_detector = LocalObjectDetector()
# object_detector = ObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
# start = datetime.datetime.now().timestamp()
@@ -37,9 +37,11 @@ labels = load_labels('/labelmap.txt')
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
######
# Separate process runner
######
def start(id, num_detections, detection_queue):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
start = datetime.datetime.now().timestamp()
frame_times = []
@@ -49,39 +51,23 @@ def start(id, num_detections, detection_queue, event):
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
# event = mp.Event()
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
edgetpu_process = EdgeTPUProcess()
# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
####
# Multiple camera processes
####
camera_processes = []
events = {}
for x in range(0, 10):
events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
camera_process.daemon = True
camera_processes.append(camera_process)
start_time = datetime.datetime.now().timestamp()
start = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
@@ -89,5 +75,5 @@ for p in camera_processes:
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start_time
duration = datetime.datetime.now().timestamp()-start
print(f"Total - Processed for {duration:.2f} seconds.")

View File

@@ -1,15 +1,5 @@
web_port: 5000
################
## List of detectors.
## Currently supported types: cpu, edgetpu
## EdgeTPU requires device as defined here: https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api
################
detectors:
coral:
type: edgetpu
device: usb
mqtt:
host: mqtt.server.com
topic_prefix: frigate
@@ -21,19 +11,6 @@ mqtt:
#################
# password: password # Optional
################
# Global configuration for saving clips
################
save_clips:
###########
# Maximum length of time to retain video during long events.
# If an object is being tracked for longer than this amount of time, the cache
# will begin to expire and the resulting clip will be the last x seconds of the event.
###########
max_seconds: 300
clips_dir: /clips
cache_dir: /cache
#################
# Default ffmpeg args. Optional and can be overwritten per camera.
# Should work with most RTSP cameras that send h264 video
@@ -69,27 +46,27 @@ save_clips:
# - -f
# - rawvideo
# - -pix_fmt
# - yuv420p
# - rgb24
####################
# Global object configuration. Applies to all cameras
# unless overridden at the camera levels.
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
# min_area (optional): minimum width*height of the bounding box for the detected object
# max_area (optional): maximum width*height of the bounding box for the detected object
# min_score (optional): minimum score for the object to initiate tracking
# threshold (optional): The minimum decimal percentage for tracked object's computed score to considered a true positive
# min_area (optional): minimum width*height of the bounding box for the detected person
# max_area (optional): maximum width*height of the bounding box for the detected person
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
####################
objects:
track:
- person
- car
- truck
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.85
threshold: 0.5
cameras:
back:
@@ -114,18 +91,7 @@ cameras:
# width: 720
################
## Specify the framerate of your camera
##
## NOTE: This should only be set in the event ffmpeg is unable to determine your camera's framerate
## on its own and the reported framerate for your camera in frigate is well over what is expected.
################
# fps: 5
################
## Optional mask. Must be the same aspect ratio as your video feed. Value is any of the following:
## - name of a file in the config directory
## - base64 encoded image prefixed with 'base64,' eg. 'base64,asfasdfasdf....'
## - polygon of x,y coordinates prefixed with 'poly,' eg. 'poly,0,900,1080,900,1080,1920,0,1920'
## Optional mask. Must be the same aspect ratio as your video feed.
##
## The mask works by looking at the bottom center of the bounding box for the detected
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
@@ -145,90 +111,26 @@ cameras:
take_frame: 1
################
# The number of seconds to retain the highest scoring image for the best.jpg endpoint before allowing it
# to be replaced by a newer image. Defaults to 60 seconds.
# The expected framerate for the camera. Frigate will try and ensure it maintains this framerate
# by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate
# to process every frame at the expense of realtime processing.
################
best_image_timeout: 60
################
# MQTT settings
################
# mqtt:
# crop_to_region: True
# snapshot_height: 300
################
# Zones
################
zones:
#################
# Name of the zone
################
front_steps:
####################
# A list of x,y coordinates to define the polygon of the zone. The top
# left corner is 0,0. Can also be a comma separated string of all x,y coordinates combined.
# The same zone name can exist across multiple cameras if they have overlapping FOVs.
# An object is determined to be in the zone based on whether or not the bottom center
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
# Coordinates can be generated at https://www.image-map.net/
####################
coordinates:
- 545,1077
- 747,939
- 788,805
################
# Zone level object filters. These are applied in addition to the global and camera filters
# and should be more restrictive than the global and camera filters. The global and camera
# filters are applied upstream.
################
filters:
person:
min_area: 5000
max_area: 100000
threshold: 0.8
################
# This will save a clip for each tracked object by frigate along with a json file that contains
# data related to the tracked object. This works by telling ffmpeg to write video segments to /cache
# from the video stream without re-encoding. Clips are then created by using ffmpeg to merge segments
# without re-encoding. The segments saved are unaltered from what frigate receives to avoid re-encoding.
# They do not contain bounding boxes. These are optimized to capture "false_positive" examples for improving frigate.
#
# NOTE: This feature does not work if you have "-vsync drop" configured in your input params.
# This will only work for camera feeds that can be copied into the mp4 container format without
# encoding such as h264. It may not work for some types of streams.
################
save_clips:
enabled: False
#########
# Number of seconds before the event to include in the clips
#########
pre_capture: 30
#########
# Objects to save clips for. Defaults to all tracked object types.
#########
# objects:
# - person
fps: 5
################
# Configuration for the snapshots in the debug view and mqtt
################
snapshots:
show_timestamp: True
draw_zones: False
draw_bounding_boxes: True
################
# Camera level object config. If defined, this is used instead of the global config.
# Camera level object config. This config is merged with the global config above.
################
objects:
track:
- person
- car
filters:
person:
min_area: 5000
max_area: 100000
min_score: 0.5
threshold: 0.85
threshold: 0.5

View File

@@ -1,47 +1,26 @@
import faulthandler; faulthandler.enable()
import os
import signal
import sys
import traceback
import signal
import cv2
import time
import datetime
import queue
import yaml
import json
import threading
import multiprocessing as mp
import subprocess as sp
import numpy as np
import logging
from flask import Flask, Response, make_response, jsonify, request
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.video import track_camera
from frigate.object_processing import TrackedObjectProcessor
from frigate.events import EventProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
CONFIG_FILE = os.environ.get('CONFIG_FILE', '/config/config.yml')
if CONFIG_FILE.endswith(".yml"):
with open(CONFIG_FILE) as f:
CONFIG = yaml.safe_load(f)
elif CONFIG_FILE.endswith(".json"):
with open(CONFIG_FILE) as f:
CONFIG = json.load(f)
CACHE_DIR = CONFIG.get('save_clips', {}).get('cache_dir', '/cache')
CLIPS_DIR = CONFIG.get('save_clips', {}).get('clips_dir', '/clips')
if not os.path.exists(CACHE_DIR) and not os.path.islink(CACHE_DIR):
os.makedirs(CACHE_DIR)
if not os.path.exists(CLIPS_DIR) and not os.path.islink(CLIPS_DIR):
os.makedirs(CLIPS_DIR)
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
@@ -65,92 +44,57 @@ FFMPEG_DEFAULT_CONFIG = {
'-flags', 'low_delay',
'-strict', 'experimental',
'-fflags', '+genpts+discardcorrupt',
'-vsync', 'drop',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-f', 'rawvideo',
'-pix_fmt', 'yuv420p'])
'-pix_fmt', 'rgb24'])
}
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DETECTORS = CONFIG.get('detectors', {'coral': {'type': 'edgetpu', 'device': 'usb'}})
DEBUG = (CONFIG.get('debug', '0') == '1')
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, detectors, detection_queue, tracked_objects_queue, stop_event):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.detectors = detectors
self.detection_queue = detection_queue
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.stop_event = stop_event
self.object_processor = object_processor
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
time.sleep(30)
if self.stop_event.is_set():
print(f"Exiting watchdog...")
break
if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart()
time.sleep(30)
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
print("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()
# check the camera processes
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if not process.is_alive():
print(f"Track process for {name} is not alive. Starting again...")
camera_process['process_fps'].value = 0.0
print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0
process = mp.Process(target=track_camera, args=(name, self.config[name], camera_process['frame_queue'],
camera_process['frame_shape'], self.detection_queue, self.tracked_objects_queue,
camera_process['process_fps'], camera_process['detection_fps'],
camera_process['read_start'], self.stop_event))
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
process.daemon = True
camera_process['process'] = process
process.start()
print(f"Track process started for {name}: {process.pid}")
if not camera_process['capture_thread'].is_alive():
frame_shape = camera_process['frame_shape']
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
camera_process['take_frame'], camera_process['camera_fps'], self.stop_event)
camera_capture.start()
camera_process['ffmpeg_process'] = ffmpeg_process
camera_process['capture_thread'] = camera_capture
elif now - camera_process['capture_thread'].current_frame.value > 5:
print(f"No frames received from {name} in 5 seconds. Exiting ffmpeg...")
ffmpeg_process = camera_process['ffmpeg_process']
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
print(f"Camera_process started for {name}: {process.pid}")
def main():
stop_event = threading.Event()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
@@ -173,171 +117,53 @@ def main():
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
time.sleep(1)
rc = plasma_process.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
'draw_zones': config.get('snapshots', {}).get('draw_zones', False),
'draw_bounding_boxes': config.get('snapshots', {}).get('draw_bounding_boxes', True)
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
}
config['zones'] = config.get('zones', {})
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess()
# Queue for clip processing
event_queue = mp.Queue()
# create the detection pipes and shms
out_events = {}
camera_shms = []
for name in CONFIG['cameras'].keys():
out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=300*300*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
camera_shms.append(shm_in)
camera_shms.append(shm_out)
detection_queue = mp.Queue()
detectors = {}
for name, detector in DETECTORS.items():
if detector['type'] == 'cpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device='cpu')
if detector['type'] == 'edgetpu':
detectors[name] = EdgeTPUProcess(detection_queue, out_events=out_events, tf_device=detector['device'])
# create the camera processes
# start the camera processes
camera_processes = {}
for name, config in CONFIG['cameras'].items():
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
if not config.get('fps') is None:
ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
if config.get('save_clips', {}).get('enabled', False):
ffmpeg_output_args = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
"-map",
"0",
f"{os.path.join(CACHE_DIR, name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
config['frame_shape'] = frame_shape
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
take_frame = config.get('take_frame', 1)
detection_frame = mp.Value('d', 0.0)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
frame_queue = mp.Queue(maxsize=2)
camera_fps = EventsPerSecond()
camera_fps.start()
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, stop_event)
camera_capture.start()
camera_processes[name] = {
'camera_fps': camera_fps,
'take_frame': take_frame,
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': detection_frame,
'read_start': mp.Value('d', 0.0),
'ffmpeg_process': ffmpeg_process,
'ffmpeg_cmd': ffmpeg_cmd,
'frame_queue': frame_queue,
'frame_shape': frame_shape,
'capture_thread': camera_capture
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0)
}
# merge global object config into camera object config
camera_objects_config = config.get('objects', {})
# get objects to track for camera
objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
# get object filters
object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
config['objects'] = {
'track': objects_to_track,
'filters': object_filters
}
camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
detection_queue, out_events[name], tracked_objects_queue, camera_processes[name]['process_fps'],
camera_processes[name]['detection_fps'],
camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detection_queue, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
# start the camera_processes
for name, camera_process in camera_processes.items():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
event_processor = EventProcessor(CONFIG, camera_processes, CACHE_DIR, CLIPS_DIR, event_queue, stop_event)
event_processor.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], detectors, detection_queue, tracked_objects_queue, stop_event)
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog.start()
def receiveSignal(signalNumber, frame):
print('Received:', signalNumber)
stop_event.set()
event_processor.join()
object_processor.join()
camera_watchdog.join()
for camera_name, camera_process in camera_processes.items():
camera_process['capture_thread'].join()
# cleanup the frame queue
while not camera_process['frame_queue'].empty():
frame_time = camera_process['frame_queue'].get()
shm = mp.shared_memory.SharedMemory(name=f"{camera_name}{frame_time}")
shm.close()
shm.unlink()
for detector in detectors.values():
detector.stop()
for shm in camera_shms:
shm.close()
shm.unlink()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
log = logging.getLogger('werkzeug')
@@ -348,23 +174,6 @@ def main():
# return a healh
return "Frigate is running. Alive and healthy!"
@app.route('/debug/stack')
def processor_stack():
frame = sys._current_frames().get(object_processor.ident, None)
if frame:
return "<br>".join(traceback.format_stack(frame)), 200
else:
return "no frame found", 200
@app.route('/debug/print_stack')
def print_stack():
pid = int(request.args.get('pid', 0))
if pid == 0:
return "missing pid", 200
else:
os.kill(pid, signal.SIGUSR1)
return "check logs", 200
@app.route('/debug/stats')
def stats():
stats = {}
@@ -373,52 +182,33 @@ def main():
for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value
capture_thread = camera_stats['capture_thread']
stats[name] = {
'camera_fps': round(capture_thread.fps.eps(), 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(capture_thread.skipped_fps.eps(), 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'read_start': camera_stats['read_start'].value,
'pid': camera_stats['process'].pid,
'ffmpeg_pid': camera_stats['ffmpeg_process'].pid,
'frame_info': {
'read': capture_thread.current_frame.value,
'detect': camera_stats['detection_frame'].value,
'process': object_processor.camera_data[name]['current_frame_time']
}
'fps': round(camera_stats['fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2)
}
stats['detectors'] = {}
for name, detector in detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
stats['coral'] = {
'fps': round(total_detection_fps, 2),
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
'detection_queue': tflite_process.detection_queue.qsize(),
'detection_start': tflite_process.detection_start.value
}
rc = plasma_process.poll()
stats['plasma_store_rc'] = rc
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in CONFIG['cameras']:
best_object = object_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
region = best_object.get('region', [0,0,300,300])
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
@@ -428,53 +218,30 @@ def main():
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name, fps, height),
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@app.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
if camera_name in CONFIG['cameras']:
# max out at specified FPS
def imagestream(camera_name):
while True:
# max out at 1 FPS
time.sleep(1)
frame = object_processor.get_current_frame(camera_name)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(camera_name, fps, height):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = object_processor.get_current_frame(camera_name, draw=True)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
object_processor.join()
camera_watchdog.join()
plasma_process.terminate()
if __name__ == '__main__':
main()

View File

@@ -1,22 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
## Tensorflow lite
&& pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_aarch64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,16 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 i965-va-driver vainfo \
## Tensorflow lite
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,24 +0,0 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
## Tensorflow lite
&& pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_armv7l.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -1,41 +0,0 @@
ARG ARCH=amd64
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${ARCH} as ffmpeg
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
libedgetpu1-max \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
# get model and labels
ARG MODEL_REFS=7064b94dd5b996189242320359dbab8b52c94a84
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/edgetpu/raw/$MODEL_REFS/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
RUN mkdir /cache /clips
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
COPY benchmark.py .
COPY process_clip.py .
CMD ["python3", "-u", "detect_objects.py"]

View File

@@ -1,533 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
export CXXFLAGS="${CXXFLAGS} -fPIC" && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
# --enable-omx \
# --enable-omx-rpi \
# --enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
# Run ffmpeg with -c:v h264_v4l2m2m to enable HW accell for decoding on raspberry pi4 64-bit

View File

@@ -1,526 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make && \
make install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-vaapi \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver && \
rm -rf /var/lib/apt/lists/*

View File

@@ -1,549 +0,0 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FONTCONFIG_VERSION=2.12.4 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBASS_VERSION=0.13.7 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBXML2_VERSION=2.9.10 \
LIBBLURAY_VERSION=1.1.2 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBASS_SHA256SUM="8fadf294bf701300d4605e6f1d92929304187fca4b8d8a47889315526adbafd7 0.13.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBXML2_SHA256SUM="f07dab13bf42d2b8db80620cce7419b3b87827cc937c8bb20fe13b8571ee9501 libxml2-v2.9.10.tar.gz"
ARG LIBBLURAY_SHA256SUM="a3dd452239b100dc9da0d01b30e1692693e2a332a7d29917bf84bb10ea7c0b42 libbluray-1.1.2.tar.bz2"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig:/opt/vc/lib/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# ### x265 http://x265.org/
# RUN \
# DIR=/tmp/x265 && \
# mkdir -p ${DIR} && \
# cd ${DIR} && \
# curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
# tar -zx && \
# cd x265_${X265_VERSION}/build/linux && \
# sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
# sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
# # export CXXFLAGS="${CXXFLAGS} -fPIC" && \
# ./multilib.sh && \
# make -C 8bit install && \
# rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fontconfig https://www.freedesktop.org/wiki/Software/fontconfig/
RUN \
DIR=/tmp/fontconfig && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.freedesktop.org/software/fontconfig/release/fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f fontconfig-${FONTCONFIG_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libass https://github.com/libass/libass
RUN \
DIR=/tmp/libass && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/libass/libass/archive/${LIBASS_VERSION}.tar.gz && \
echo ${LIBASS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${LIBASS_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# RUN \
# DIR=/tmp/aom && \
# git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
# cd ${DIR} ; \
# rm -rf CMakeCache.txt CMakeFiles ; \
# mkdir -p ./aom_build ; \
# cd ./aom_build ; \
# cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
# make ; \
# make install ; \
# rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libxml2 - for libbluray
RUN \
DIR=/tmp/libxml2 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://gitlab.gnome.org/GNOME/libxml2/-/archive/v${LIBXML2_VERSION}/libxml2-v${LIBXML2_VERSION}.tar.gz && \
echo ${LIBXML2_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f libxml2-v${LIBXML2_VERSION}.tar.gz && \
./autogen.sh --prefix="${PREFIX}" --with-ftp=no --with-http=no --with-python=no && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libbluray - Requires libxml, freetype, and fontconfig
RUN \
DIR=/tmp/libbluray && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.videolan.org/pub/videolan/libbluray/${LIBBLURAY_VERSION}/libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
echo ${LIBBLURAY_SHA256SUM} | sha256sum --check && \
tar -jx --strip-components=1 -f libbluray-${LIBBLURAY_VERSION}.tar.bz2 && \
./configure --prefix="${PREFIX}" --disable-examples --disable-bdjava-jar --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
# make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## userland https://github.com/raspberrypi/userland
RUN \
DIR=/tmp/userland && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone --depth 1 https://github.com/raspberrypi/userland.git . && \
./buildme && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libass \
--enable-fontconfig \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libbluray \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-omx \
--enable-omx-rpi \
--enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
# copy userland lib too
ldd ${PREFIX}/bin/ffmpeg | grep opt/vc | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
RUN \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends libx265-dev libaom-dev && \
apt-get autoremove -y && \
apt-get clean -y
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/

View File

@@ -1,39 +0,0 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

View File

@@ -1,49 +0,0 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
# need to build cmake from source because binary distribution is broken for arm64
# https://github.com/scikit-build/cmake-python-distributions/issues/115
# https://github.com/skvark/opencv-python/issues/366
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
RUN pip3 install scikit-build
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
&& cd cmake-python-distributions/ \
&& python3 setup.py bdist_wheel
RUN pip3 install cmake-python-distributions/dist/*.whl
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

View File

@@ -1,23 +0,0 @@
# Camera Specific Configuration
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
## RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```

74
docs/DEVICES.md Normal file
View File

@@ -0,0 +1,74 @@
# Configuration Examples
### Default (most RTSP cameras)
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
```yaml
ffmpeg:
global_args:
- -hide_banner
- -loglevel
- panic
hwaccel_args: []
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -rtsp_transport
- tcp
- -stimeout
- '5000000'
- -use_wallclock_as_timestamps
- '1'
output_args:
- -vf
- mpdecimate
- -f
- rawvideo
- -pix_fmt
- rgb24
```
### RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -vsync
- drop
- -use_wallclock_as_timestamps
- '1'
```
### Hardware Acceleration
Intel Quicksync
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```

View File

@@ -1,32 +0,0 @@
# Hardware Acceleration for Decoding Video
FFmpeg is compiled to support hardware accelerated decoding of video streams.
## Intel-based CPUs via Quicksync (https://trac.ffmpeg.org/wiki/Hardware/QuickSync)
```yaml
ffmpeg:
hwaccel_args:
- -hwaccel
- vaapi
- -hwaccel_device
- /dev/dri/renderD128
- -hwaccel_output_format
- yuv420p
```
## Raspberry Pi 3b and 4 (32bit OS)
Ensure you increase the allocated RAM for your GPU to at least 128 (raspi-config > Advanced Options > Memory Split)
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_mmal
```
## Raspberry Pi 4 (64bit OS)
```yaml
ffmpeg:
hwaccel_args:
- -c:v
- h264_v4l2m2m
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

View File

View File

@@ -2,14 +2,12 @@ import os
import datetime
import hashlib
import multiprocessing as mp
import queue
from multiprocessing.connection import Connection
from abc import ABC, abstractmethod
from typing import Dict
import numpy as np
import SharedArray as sa
import pyarrow.plasma as plasma
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, listen, SharedMemoryFrameManager
from frigate.util import EventsPerSecond
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
@@ -30,32 +28,13 @@ def load_labels(path, encoding='utf-8'):
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
class ObjectDetector():
def __init__(self):
edge_tpu_delegate = None
if tf_device != 'cpu':
try:
print(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
print("TPU found")
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
try:
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
@@ -70,22 +49,6 @@ class LocalObjectDetector(ObjectDetector):
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
@@ -99,91 +62,71 @@ class LocalObjectDetector(ObjectDetector):
return detections
def run_detector(detection_queue, out_events: Dict[str, mp.Event], avg_speed, start, tf_device):
def run_detector(detection_queue, avg_speed, start):
print(f"Starting detection process: {os.getpid()}")
listen()
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device)
plasma_client = plasma.connect("/tmp/plasma")
object_detector = ObjectDetector()
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {
'shm': out_shm,
'np': out_np
}
while True:
connection_id = detection_queue.get()
input_frame = frame_manager.get(connection_id, (1,300,300,3))
object_id_str = detection_queue.get()
object_id_hash = hashlib.sha1(str.encode(object_id_str))
object_id = plasma.ObjectID(object_id_hash.digest())
object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
input_frame = plasma_client.get(object_id, timeout_ms=0)
if input_frame is None:
if input_frame is plasma.ObjectNotAvailable:
plasma_client.put(np.zeros((20,6), np.float32), object_id_out)
continue
# detect and send the output
# detect and put the output in the plasma store
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
duration = datetime.datetime.now().timestamp()-start.value
outputs[connection_id]['np'][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, detection_queue, out_events, tf_device=None):
self.out_events = out_events
self.detection_queue = detection_queue
def __init__(self):
self.detection_queue = mp.Queue()
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.tf_device = tf_device
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.tf_device))
self.detect_process.terminate()
print("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
print("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event):
def __init__(self, name, labels, detection_queue):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.plasma_client = plasma.connect("/tmp/plasma")
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,300,300,3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=.4):
detections = []
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=10.0)
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
self.plasma_client.put(tensor_input, object_id_frame)
self.detection_queue.put(now)
raw_detections = self.plasma_client.get(object_id_detections)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
@@ -191,9 +134,6 @@ class RemoteObjectDetector():
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.plasma_client.delete([object_id_frame, object_id_detections])
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()
return detections

View File

@@ -1,174 +0,0 @@
import os
import time
import psutil
import threading
from collections import defaultdict
import json
import datetime
import subprocess as sp
import queue
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, cache_dir, clip_dir, event_queue, stop_event):
threading.Thread.__init__(self)
self.config = config
self.camera_processes = camera_processes
self.cache_dir = cache_dir
self.clip_dir = clip_dir
self.cached_clips = {}
self.event_queue = event_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(self.cache_dir)
files_in_use = []
for process_data in self.camera_processes.values():
try:
ffmpeg_process = psutil.Process(pid=process_data['ffmpeg_process'].pid)
flist = ffmpeg_process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(self.cache_dir):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(self.cache_dir,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
print(f"bad file: {f}")
os.remove(os.path.join(self.cache_dir,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.get('save_clips', {}).get('max_seconds', 300)
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(self.cache_dir,f))
def create_clip(self, camera, event_data, pre_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']:
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+5
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(self.cache_dir,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
f"{os.path.join(self.clip_dir, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
print(p.stderr)
return
with open(f"{os.path.join(self.clip_dir, clip_name)}.json", 'w') as outfile:
json.dump(event_data, outfile)
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
self.refresh_cache()
save_clips_config = self.config['cameras'][camera].get('save_clips', {})
# if save clips is not enabled for this camera, just continue
if not save_clips_config.get('enabled', False):
continue
# if specific objects are listed for this camera, only save clips for them
if 'objects' in save_clips_config:
if not event_data['label'] in save_clips_config['objects']:
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.get('pre_capture', 30))
del self.events_in_process[event_data['id']]

View File

@@ -4,7 +4,6 @@ import numpy as np
class MotionDetector():
def __init__(self, frame_shape, mask, resize_factor=4):
self.frame_shape = frame_shape
self.resize_factor = resize_factor
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
@@ -17,16 +16,14 @@ class MotionDetector():
def detect(self, frame):
motion_boxes = []
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
resized_frame[self.mask] = [255]
gray[self.mask] = [255]
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
@@ -34,7 +31,7 @@ class MotionDetector():
self.frame_counter += 1
else:
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
@@ -73,10 +70,10 @@ class MotionDetector():
# TODO: this really depends on FPS
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(resized_frame, self.avg_frame, 0.2)
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
self.motion_frame_count = 0
return motion_boxes

View File

@@ -1,20 +1,17 @@
import json
import hashlib
import datetime
import time
import copy
import cv2
import threading
import queue
import copy
import numpy as np
from collections import Counter, defaultdict
import itertools
import pyarrow.plasma as plasma
import SharedArray as sa
import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label, SharedMemoryFrameManager
from frigate.util import draw_box_with_label
from frigate.edgetpu import load_labels
from typing import Callable, Dict
from statistics import mean, median
PATH_TO_LABELS = '/labelmap.txt'
@@ -25,369 +22,128 @@ COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def zone_filtered(obj, object_config):
object_name = obj['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', 24000000) < obj['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['computed_score']:
return True
return False
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.frame_manager = frame_manager
self.best_objects = {}
self.object_status = defaultdict(lambda: 'OFF')
self.tracked_objects = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.config['frame_shape'], np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw=False):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = copy.deepcopy(self.tracked_objects)
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if self.config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if self.config['snapshots']['draw_zones']:
for name, zone in self.config['zones'].items():
thickness = 8 if any([name in obj['zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone['contour']], -1, zone['color'], thickness)
return frame_copy
def false_positive(self, obj):
# once a true positive, always a true positive
if not obj.get('false_positive', True):
return False
threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
if obj['computed_score'] < threshold:
return True
return False
def compute_score(self, obj):
scores = obj['score_history'][:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, tracked_objects):
self.current_frame_time = frame_time
# get the new frame and delete the old frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
current_ids = tracked_objects.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
self.tracked_objects[id] = tracked_objects[id]
self.tracked_objects[id]['zones'] = []
# start the score history
self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, tracked_objects[id])
for id in updated_ids:
self.tracked_objects[id].update(tracked_objects[id])
# if the object is not in the current frame, add a 0.0 to the score history
if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
self.tracked_objects[id]['score_history'].append(0.0)
else:
self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
# only keep the last 10 scores
if len(self.tracked_objects[id]['score_history']) > 10:
self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
# calculate if this is a false positive
self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
# call event handlers
for c in self.callbacks['update']:
c(self.name, self.tracked_objects[id])
for id in removed_ids:
# publish events to mqtt
self.tracked_objects[id]['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, self.tracked_objects[id])
del self.tracked_objects[id]
# check to see if the objects are in any zones
for obj in self.tracked_objects.values():
current_zones = []
bottom_center = (obj['centroid'][0], obj['box'][3])
# check each zone
for name, zone in self.config['zones'].items():
contour = zone['contour']
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in obj.get('zones', []) or not zone_filtered(obj, zone.get('filters', {})):
current_zones.append(name)
obj['zones'] = current_zones
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj['label']
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
continue
obj_copy = copy.deepcopy(obj)
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
else:
obj_copy['frame'] = np.copy(current_frame)
self.best_objects[object_type] = obj_copy
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type])
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj['false_positive']:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != self.object_status[obj_name]:
self.object_status[obj_name] = new_status
for c in self.callbacks['object_status']:
c(self.name, obj_name, new_status)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_status[obj_name] = 'OFF'
for c in self.callbacks['object_status']:
c(self.name, obj_name, 'OFF')
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name])
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
threading.Thread.__init__(self)
self.camera_config = camera_config
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj):
# publish events to mqtt
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
self.event_queue.put(('start', camera, obj))
def update(camera, obj):
pass
def end(camera, obj):
self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
self.event_queue.put(('end', camera, obj))
def snapshot(camera, obj):
if not 'frame' in obj:
return
best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_YUV2BGR_I420)
if self.camera_config[camera]['snapshots']['draw_bounding_boxes']:
thickness = 2
color = COLOR_MAP[obj['label']]
box = obj['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
if mqtt_config.get('crop_to_region'):
region = obj['region']
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if 'snapshot_height' in mqtt_config:
height = int(mqtt_config['snapshot_height'])
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if self.camera_config[camera]['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
desired_size = max(200, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.camera_config.keys():
camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
self.plasma_client = plasma.connect("/tmp/plasma")
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {},
'current_frame': np.zeros((720,1280,3), np.uint8),
'current_frame_time': 0.0,
'object_id': None
})
# {
# 'zone_name': {
# 'person': ['camera_1', 'camera_2']
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
# set colors for zones
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
# create zone contours
for camera_config in self.camera_config.values():
for zone_name, zone_config in camera_config['zones'].items():
zone_config['color'] = zone_colors[zone_name]
coordinates = zone_config['coordinates']
if isinstance(coordinates, list):
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
elif isinstance(coordinates, str):
points = coordinates.split(',')
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
def get_best(self, camera, label):
best_objects = self.camera_states[camera].best_objects
if label in best_objects:
return best_objects[label]
if label in self.camera_data[camera]['best_objects']:
return self.camera_data[camera]['best_objects'][label]['frame']
else:
return {}
return None
def get_current_frame(self, camera, draw=False):
return self.camera_states[camera].get_current_frame(draw)
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def run(self):
while True:
if self.stop_event.is_set():
print(f"Exiting object processor...")
break
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
try:
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
config = self.config[camera]
best_objects = self.camera_data[camera]['best_objects']
current_object_status = self.camera_data[camera]['object_status']
self.camera_data[camera]['tracked_objects'] = tracked_objects
camera_state = self.camera_states[camera]
###
# Draw tracked objects on the frame
###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
camera_state.update(frame_time, current_tracked_objects)
if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# update zone status for each label
for zone in camera_state.config['zones'].keys():
# get labels for current camera and all labels in current zone
labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
# for each label in zone
for label in labels_to_check:
camera_list = self.zone_data[zone][label]
# remove or add the camera to the list for the current label
previous_state = len(camera_list) > 0
if label in labels_for_camera:
camera_list.add(camera_state.name)
elif camera_state.name in camera_list:
camera_list.remove(camera_state.name)
new_state = len(camera_list) > 0
# if the value is changing, send over MQTT
if previous_state == False and new_state == True:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
elif previous_state == True and new_state == False:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
if config['snapshots']['show_timestamp']:
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
###
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
# store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id']
if not previous_object_id is None:
self.plasma_client.delete([previous_object_id])
self.camera_data[camera]['object_id'] = object_id
###
# Maintain the highest scoring recent object and frame for each label
###
for obj in tracked_objects.values():
# if the object wasn't seen on the current frame, skip it
if obj['frame_time'] != frame_time:
continue
if obj['label'] in best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is more than 1 minute old, use the new object
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
else:
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
best_objects[obj['label']] = obj
###
# Report over MQTT
###
# count objects with more than 2 entries in history by type
obj_counter = Counter()
for obj in tracked_objects.values():
if len(obj['history']) > 1:
obj_counter[obj['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
new_status = 'ON' if count > 0 else 'OFF'
if new_status != current_object_status[obj_name]:
current_object_status[obj_name] = new_status
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
# send the best snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
# expire any objects that are ON and no longer detected
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
for obj_name in expired_objects:
current_object_status[obj_name] = 'OFF'
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
# send updated snapshot over mqtt
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
jpg_bytes = jpg.tobytes()
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)

View File

@@ -5,8 +5,6 @@ import cv2
import itertools
import copy
import numpy as np
import random
import string
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
@@ -19,11 +17,10 @@ class ObjectTracker():
self.max_disappeared = max_disappeared
def register(self, index, obj):
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
id = f"{obj['frame_time']}-{index}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
@@ -34,8 +31,22 @@ class ObjectTracker():
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
# group by name

View File

@@ -1,16 +1,9 @@
from abc import ABC, abstractmethod
import datetime
import time
import signal
import traceback
import collections
import numpy as np
import cv2
import threading
import matplotlib.pyplot as plt
import hashlib
from multiprocessing import shared_memory
from typing import AnyStr
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
@@ -45,9 +38,6 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
@@ -70,37 +60,6 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
return (x_offset, y_offset, x_offset+size, y_offset+size)
def yuv_region_2_rgb(frame, region):
height = frame.shape[0]//3*2
width = frame.shape[1]
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
x1 = region[0]
y1 = region[1]
uv_x1 = x1//2
uv_y1 = y1//4
uv_width = size//2
uv_height = size//4
u_y_start = height
v_y_start = height + height//4
two_x_offset = width//2
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# y channel
yuv_cropped_frame[0:size, 0:size] = frame[y1:y1+size, x1:x1+size]
# u channel
yuv_cropped_frame[size:size+uv_height, 0:uv_width] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size:size+uv_height, uv_width:size] = frame[uv_y1+u_y_start:uv_y1+u_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
# v channel
yuv_cropped_frame[size+uv_height:size+uv_height*2, 0:uv_width] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1:uv_x1+uv_width]
yuv_cropped_frame[size+uv_height:size+uv_height*2, uv_width:size] = frame[uv_y1+v_y_start:uv_y1+v_y_start+uv_height, uv_x1+two_x_offset:uv_x1+two_x_offset+uv_width]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
@@ -158,87 +117,13 @@ class EventsPerSecond:
self._start = datetime.datetime.now().timestamp()
def update(self):
if self._start is None:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
pass
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]

View File

@@ -8,13 +8,14 @@ import ctypes
import multiprocessing as mp
import subprocess as sp
import numpy as np
import hashlib
import pyarrow.plasma as plasma
import SharedArray as sa
import copy
import itertools
import json
import base64
from typing import Dict, List
from collections import defaultdict
from frigate.util import draw_box_with_label, yuv_region_2_rgb, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, SharedMemoryFrameManager
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector
@@ -53,7 +54,7 @@ def get_ffmpeg_input(ffmpeg_input):
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
return ffmpeg_input.format(**frigate_vars)
def filtered(obj, objects_to_track, object_filters, mask=None):
def filtered(obj, objects_to_track, object_filters, mask):
object_name = obj[0]
if not object_name in objects_to_track:
@@ -72,8 +73,8 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
if obj_settings.get('max_area', 24000000) < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.get('min_score', 0) > obj[1]:
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj[1]:
return True
# compute the coordinates of the object and make sure
@@ -82,13 +83,13 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if (not mask is None) and (mask[y_location][x_location] == 0):
if mask[y_location][x_location] == [0]:
return True
return False
return False
def create_tensor_input(frame, region):
cropped_frame = yuv_region_2_rgb(frame, region)
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
@@ -103,214 +104,208 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
ffmpeg_process.terminate()
try:
print("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
ffmpeg_process.wait(timeout=30)
except sp.TimeoutExpired:
print("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
ffmpeg_process.wait()
print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond,
stop_event: mp.Event, current_frame: mp.Value):
frame_num = 0
frame_size = frame_shape[0] * frame_shape[1] * 3 // 2
skipped_fps.start()
while True:
if stop_event.is_set():
print(f"{camera_name}: stop event set. exiting capture thread...")
break
frame_bytes = ffmpeg_process.stdout.read(frame_size)
current_frame.value = datetime.datetime.now().timestamp()
if len(frame_bytes) < frame_size:
print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
if ffmpeg_process.poll() != None:
print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
break
else:
continue
fps.update()
frame_num += 1
if (frame_num % take_frame) != 0:
skipped_fps.update()
continue
# if the queue is full, skip this frame
if frame_queue.full():
skipped_fps.update()
continue
# put the frame in the frame manager
frame_buffer = frame_manager.create(f"{camera_name}{current_frame.value}", frame_size)
frame_buffer[:] = frame_bytes[:]
frame_manager.close(f"{camera_name}{current_frame.value}")
# add to the queue
frame_queue.put(current_frame.value)
class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, stop_event):
threading.Thread.__init__(self)
self.name = name
self.frame_shape = frame_shape
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
self.frame_queue = frame_queue
self.take_frame = take_frame
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
self.stop_event = stop_event
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.frame_manager, self.frame_queue, self.take_frame,
self.fps, self.skipped_fps, self.stop_event, self.current_frame)
def track_camera(name, config, frame_queue, frame_shape, detection_queue, result_connection, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
listen()
detection_frame.value = 0.0
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
# Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {})
objects_to_track = camera_objects_config.get('track', [])
object_filters = camera_objects_config.get('filters', {})
camera_objects_config = config.get('objects', {})
# combine tracked objects lists
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
# merge object filters
global_object_filters = global_objects_config.get('filters', {})
camera_object_filters = camera_objects_config.get('filters', {})
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
object_filters = {}
for obj in objects_with_config:
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
expected_fps = config['fps']
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
try:
sa.delete(name)
except:
pass
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
# load in the mask for object detection
if 'mask' in config:
if config['mask'].startswith('base64,'):
img = base64.b64decode(config['mask'][7:])
npimg = np.fromstring(img, dtype=np.uint8)
mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
elif config['mask'].startswith('poly,'):
points = config['mask'].split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
mask[:] = 255
cv2.fillPoly(mask, pts=[contour], color=(0))
else:
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
else:
mask = None
if mask is None or mask.size == 0:
mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
if mask is None:
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_tracker = ObjectTracker(10)
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, fps, detection_fps, detection_frame, objects_to_track, object_filters, mask, stop_event)
print(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value,
objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
exit_on_empty: bool = False):
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0
avg_wait = 0.0
fps_tracker = EventsPerSecond()
skipped_fps_tracker = EventsPerSecond()
fps_tracker.start()
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
print(f"Exiting track_objects...")
break
start = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size)
duration = datetime.datetime.now().timestamp()-start
avg_wait = (avg_wait*99+duration)/100
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
if not frame_bytes:
rc = ffmpeg_process.poll()
if rc is not None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
time.sleep(10)
else:
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
continue
current_frame_time.value = frame_time
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
print(f"{camera_name}: frame {frame_time} is not in memory store.")
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
# skip object detection if we are below the min_fps and wait time is less than half the average
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()
continue
skipped_fps.value = skipped_fps_tracker.eps()
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
tracked_objects = object_tracker.tracked_objects.values()
# compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
#########
# merge objects, check for clipped objects and look again up to 4 times
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
@@ -333,31 +328,50 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
for d in refined_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
if filtered(det, objects_to_track, object_filters, mask):
continue
selected_objects.append(det)
refining = True
else:
selected_objects.append(obj)
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")
print(f"{name}: exiting subprocess")

View File

@@ -1,80 +0,0 @@
0 person
1 bicycle
2 car
3 motorcycle
4 airplane
5 bus
6 train
7 car
8 boat
9 traffic light
10 fire hydrant
12 stop sign
13 parking meter
14 bench
15 bird
16 cat
17 dog
18 horse
19 sheep
20 cow
21 elephant
22 bear
23 zebra
24 giraffe
26 backpack
27 umbrella
30 handbag
31 tie
32 suitcase
33 frisbee
34 skis
35 snowboard
36 sports ball
37 kite
38 baseball bat
39 baseball glove
40 skateboard
41 surfboard
42 tennis racket
43 bottle
45 wine glass
46 cup
47 fork
48 knife
49 spoon
50 bowl
51 banana
52 apple
53 sandwich
54 orange
55 broccoli
56 carrot
57 hot dog
58 pizza
59 donut
60 cake
61 chair
62 couch
63 potted plant
64 bed
66 dining table
69 toilet
71 tv
72 laptop
73 mouse
74 remote
75 keyboard
76 cell phone
77 microwave
78 oven
79 toaster
80 sink
81 refrigerator
83 book
84 clock
85 vase
86 scissors
87 teddy bear
88 hair drier
89 toothbrush

View File

@@ -1,152 +0,0 @@
import sys
import click
import os
import datetime
from unittest import TestCase, main
from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
from frigate.motion import MotionDetector
from frigate.edgetpu import LocalObjectDetector
from frigate.objects import ObjectTracker
import multiprocessing as mp
import numpy as np
import cv2
from frigate.object_processing import COLOR_MAP, CameraState
class ProcessClip():
def __init__(self, clip_path, frame_shape, config):
self.clip_path = clip_path
self.frame_shape = frame_shape
self.camera_name = 'camera'
self.frame_manager = DictFrameManager()
# self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
stop_event = mp.Event()
detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
current_frame = mp.Value('d', 0.0)
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(10)
process_fps = mp.Value('d', 0.0)
detection_fps = mp.Value('d', 0.0)
current_frame = mp.Value('d', 0.0)
stop_event = mp.Event()
process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def objects_found(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj):
nonlocal obj_detected
nonlocal top_computed_score
if obj['computed_score'] > top_computed_score:
top_computed_score = obj['computed_score']
if not obj['false_positive']:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects)
for obj in self.camera_state.tracked_objects.values():
print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
config = {
'snapshots': {
'show_timestamp': False,
'draw_zones': False
},
'zones': {},
'objects': {
'track': [label],
'filters': {
'person': {
'threshold': threshold
}
}
}
}
results = []
for c in clips:
frame_shape = get_frame_shape(c)
config['frame_shape'] = frame_shape
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=config['objects']['track'])
results.append((c, process_clip.objects_found(debug_path)))
for result in results:
print(f"{result[0]}: {result[1]}")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()