mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-10-29 10:12:45 +08:00
Compare commits
34 Commits
dependabot
...
v0.4.0-bet
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8ea0eeda06 | ||
|
|
94878315ae | ||
|
|
8dab9e17dd | ||
|
|
5b2470e91e | ||
|
|
3d5faa956c | ||
|
|
b615b84f57 | ||
|
|
6f7b70665b | ||
|
|
3a5cb465fe | ||
|
|
205b8b413f | ||
|
|
1b74d7a19f | ||
|
|
b18e8ca468 | ||
|
|
9ebe186443 | ||
|
|
e580aca440 | ||
|
|
191f293037 | ||
|
|
d31ba69b1b | ||
|
|
02e1035826 | ||
|
|
3d419a39a8 | ||
|
|
474a3e604d | ||
|
|
fc757ad04f | ||
|
|
2a86d3e2e8 | ||
|
|
3e374ceb5f | ||
|
|
0b8f2cadf3 | ||
|
|
42f666491a | ||
|
|
35771b3444 | ||
|
|
2010ae8f87 | ||
|
|
fb0f6bcfae | ||
|
|
7b1da388d9 | ||
|
|
5d0c12fbd4 | ||
|
|
a43fd96349 | ||
|
|
bf94fdc54d | ||
|
|
48b3f22866 | ||
|
|
36443980ea | ||
|
|
0f8f8fa3b3 | ||
|
|
d8a3f8fc9d |
133
Dockerfile
133
Dockerfile
@@ -1,107 +1,50 @@
|
||||
FROM ubuntu:18.04
|
||||
|
||||
ARG DEVICE
|
||||
FROM debian:stretch-slim
|
||||
LABEL maintainer "blakeb@blakeshome.com"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
# Install packages for apt repo
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
apt-transport-https \
|
||||
ca-certificates \
|
||||
curl \
|
||||
wget \
|
||||
gnupg-agent \
|
||||
dirmngr \
|
||||
software-properties-common \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
apt-transport-https ca-certificates \
|
||||
gnupg wget \
|
||||
ffmpeg \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-dev \
|
||||
python3-numpy \
|
||||
# python-prctl
|
||||
build-essential libcap-dev \
|
||||
# pillow-simd
|
||||
# zlib1g-dev libjpeg-dev \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
i965-va-driver vainfo \
|
||||
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
|
||||
&& apt -qq update \
|
||||
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
|
||||
&& apt -qq install --no-install-recommends -y \
|
||||
libedgetpu1-max \
|
||||
python3-edgetpu \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||
|
||||
COPY scripts/install_odroid_repo.sh .
|
||||
# needs to be installed before others
|
||||
RUN pip3 install -U wheel setuptools
|
||||
|
||||
RUN if [ "$DEVICE" = "odroid" ]; then \
|
||||
sh /install_odroid_repo.sh; \
|
||||
fi
|
||||
|
||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y \
|
||||
python3 \
|
||||
# OpenCV dependencies
|
||||
ffmpeg \
|
||||
build-essential \
|
||||
cmake \
|
||||
unzip \
|
||||
pkg-config \
|
||||
libjpeg-dev \
|
||||
libpng-dev \
|
||||
libtiff-dev \
|
||||
libavcodec-dev \
|
||||
libavformat-dev \
|
||||
libswscale-dev \
|
||||
libv4l-dev \
|
||||
libxvidcore-dev \
|
||||
libx264-dev \
|
||||
libgtk-3-dev \
|
||||
libatlas-base-dev \
|
||||
gfortran \
|
||||
python3-dev \
|
||||
# Coral USB Python API Dependencies
|
||||
libusb-1.0-0 \
|
||||
python3-pip \
|
||||
python3-pil \
|
||||
python3-numpy \
|
||||
libc++1 \
|
||||
libc++abi1 \
|
||||
libunwind8 \
|
||||
libgcc1 \
|
||||
# VAAPI drivers for Intel hardware accel
|
||||
libva-drm2 libva2 i965-va-driver vainfo \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Download & build OpenCV
|
||||
# TODO: use multistage build to reduce image size:
|
||||
# https://medium.com/@denismakogon/pain-and-gain-running-opencv-application-with-golang-and-docker-on-alpine-3-7-435aa11c7aec
|
||||
# https://www.merixstudio.com/blog/docker-multi-stage-builds-python-development/
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
RUN cd /usr/local/src/ \
|
||||
&& unzip 4.0.1.zip \
|
||||
&& rm 4.0.1.zip \
|
||||
&& cd /usr/local/src/opencv-4.0.1/ \
|
||||
&& mkdir build \
|
||||
&& cd /usr/local/src/opencv-4.0.1/build \
|
||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||
&& make -j4 \
|
||||
&& make install \
|
||||
&& ldconfig \
|
||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||
|
||||
# Download and install EdgeTPU libraries for Coral
|
||||
RUN wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names \
|
||||
&& tar xzf edgetpu_api.tar.gz
|
||||
|
||||
COPY scripts/install_edgetpu_api.sh edgetpu_api/install.sh
|
||||
|
||||
RUN cd edgetpu_api \
|
||||
&& /bin/bash install.sh
|
||||
|
||||
# Copy a python 3.6 version
|
||||
RUN cd /usr/local/lib/python3.6/dist-packages/edgetpu/swig/ \
|
||||
&& ln -s _edgetpu_cpp_wrapper.cpython-35m-arm-linux-gnueabihf.so _edgetpu_cpp_wrapper.cpython-36m-arm-linux-gnueabihf.so
|
||||
RUN pip3 install -U \
|
||||
opencv-python-headless \
|
||||
python-prctl \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
scipy
|
||||
|
||||
# symlink the model and labels
|
||||
RUN wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite --trust-server-names
|
||||
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O coco_labels.txt --trust-server-names
|
||||
RUN ln -s mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
||||
RUN ln -s /coco_labels.txt /label_map.pbtext
|
||||
|
||||
# Minimize image size
|
||||
RUN (apt-get autoremove -y; \
|
||||
apt-get autoclean -y)
|
||||
|
||||
# Install core packages
|
||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
||||
RUN pip install -U pip \
|
||||
numpy \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
COPY detect_objects.py .
|
||||
|
||||
@@ -14,7 +14,7 @@ flattened_frame = np.expand_dims(frame, axis=0).flatten()
|
||||
detection_times = []
|
||||
|
||||
for x in range(0, 1000):
|
||||
objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
|
||||
objects = engine.detect_with_input_tensor(flattened_frame, threshold=0.1, top_k=3)
|
||||
detection_times.append(engine.get_inference_time())
|
||||
|
||||
print("Average inference time: " + str(statistics.mean(detection_times)))
|
||||
@@ -47,16 +47,24 @@ mqtt:
|
||||
# - rgb24
|
||||
|
||||
####################
|
||||
# Global object configuration. Applies to all cameras and regions
|
||||
# unless overridden at the camera/region levels.
|
||||
# Global object configuration. Applies to all cameras
|
||||
# unless overridden at the camera levels.
|
||||
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
|
||||
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
|
||||
# min_area (optional): minimum width*height of the bounding box for the detected person
|
||||
# max_area (optional): maximum width*height of the bounding box for the detected person
|
||||
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
|
||||
####################
|
||||
objects:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
track:
|
||||
- person
|
||||
- car
|
||||
- truck
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
cameras:
|
||||
back:
|
||||
@@ -91,18 +99,21 @@ cameras:
|
||||
################
|
||||
take_frame: 1
|
||||
|
||||
################
|
||||
# Overrides for global object config
|
||||
################
|
||||
objects:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
track:
|
||||
- person
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
################
|
||||
# size: size of the region in pixels
|
||||
# x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0)
|
||||
# min_person_area (optional): minimum width*height of the bounding box for the detected person
|
||||
# max_person_area (optional): maximum width*height of the bounding box for the detected person
|
||||
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
|
||||
# Tips: All regions are resized to 300x300 before detection because the model is trained on that size.
|
||||
# Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible.
|
||||
# Defining a region that goes outside the bounds of the image will result in errors.
|
||||
@@ -111,18 +122,9 @@ cameras:
|
||||
- size: 350
|
||||
x_offset: 0
|
||||
y_offset: 300
|
||||
objects:
|
||||
car:
|
||||
threshold: 0.2
|
||||
- size: 400
|
||||
x_offset: 350
|
||||
y_offset: 250
|
||||
objects:
|
||||
person:
|
||||
min_area: 2000
|
||||
- size: 400
|
||||
x_offset: 750
|
||||
y_offset: 250
|
||||
objects:
|
||||
person:
|
||||
min_area: 2000
|
||||
|
||||
@@ -3,11 +3,12 @@ import time
|
||||
import queue
|
||||
import yaml
|
||||
import numpy as np
|
||||
from flask import Flask, Response, make_response
|
||||
from flask import Flask, Response, make_response, jsonify
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import Camera
|
||||
from frigate.object_detection import PreppedQueueProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
|
||||
with open('/config/config.yml') as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
@@ -70,19 +71,23 @@ def main():
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of cameras * 5)
|
||||
max_queue_size = len(CONFIG['cameras'].items())*5
|
||||
prepped_frame_queue = queue.Queue(max_queue_size)
|
||||
# Queue for prepped frames, max size set to number of regions * 3
|
||||
prepped_frame_queue = queue.Queue()
|
||||
|
||||
cameras = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
|
||||
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue
|
||||
prepped_frame_queue,
|
||||
fps_tracker
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
fps_tracker.start()
|
||||
|
||||
for name, camera in cameras.items():
|
||||
camera.start()
|
||||
@@ -96,18 +101,34 @@ def main():
|
||||
# return a healh
|
||||
return "Frigate is running. Alive and healthy!"
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {
|
||||
'coral': {
|
||||
'fps': fps_tracker.eps(),
|
||||
'inference_speed': prepped_queue_processor.avg_inference_speed,
|
||||
'queue_length': prepped_frame_queue.qsize()
|
||||
}
|
||||
}
|
||||
|
||||
for name, camera in cameras.items():
|
||||
stats[name] = camera.stats()
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in cameras:
|
||||
best_frame = cameras[camera_name].get_best(label)
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
else:
|
||||
return f'Camera named {camera_name} not found', 404
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
@@ -116,7 +137,7 @@ def main():
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
else:
|
||||
return f'Camera named {camera_name} not found', 404
|
||||
return "Camera named {} not found".format(camera_name), 404
|
||||
|
||||
def imagestream(camera_name):
|
||||
while True:
|
||||
|
||||
@@ -1,41 +1,41 @@
|
||||
import json
|
||||
import cv2
|
||||
import threading
|
||||
import prctl
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
|
||||
def __init__(self, client, topic_prefix, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.best_frames = best_frames
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
# total up all scores by object type
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in detected_objects:
|
||||
obj_counter[obj['name']] += obj['score']
|
||||
for obj in self.camera.object_tracker.tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['name']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, total_score in obj_counter.items():
|
||||
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.best_frames.best_frames:
|
||||
ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
@@ -44,4 +44,11 @@ class MqttObjectPublisher(threading.Thread):
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
# send updated snapshot snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
@@ -2,12 +2,15 @@ import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import copy
|
||||
import prctl
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from . util import tonumpyarray, LABELS, PATH_TO_CKPT
|
||||
|
||||
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
def __init__(self, cameras, prepped_frame_queue, fps):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
@@ -16,79 +19,121 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = LABELS
|
||||
self.fps = fps
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
|
||||
# print(self.engine.get_inference_time())
|
||||
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
# parse and pass detected objects back to the camera
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
parsed_objects.append({
|
||||
'region_id': frame['region_id'],
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'box': obj.bounding_box.flatten().tolist()
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset, region_id,
|
||||
prepped_frame_queue):
|
||||
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_name = camera_name
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.region_id = region_id
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.frame_ready:
|
||||
with self.camera.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
|
||||
self.camera.frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with self.frame_lock:
|
||||
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
||||
frame_time = self.frame_time.value
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
# grab the current tracked objects
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
self.camera.regions_in_process[frame_time] += len(tracked_objects)
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
})
|
||||
|
||||
# request a region for tracked objects
|
||||
for tracked_object in tracked_objects:
|
||||
box = tracked_object['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
||||
# if the queue is over 100 items long, only prep dynamic regions
|
||||
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
frame = self.frame_cache.get(resize_request['frame_time'], None)
|
||||
|
||||
if frame is None:
|
||||
print("RegionPrepper: frame_time not in frame_cache")
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
# make a copy of the region
|
||||
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
# TODO: use Pillow-SIMD?
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'camera_name': self.camera_name,
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_id': self.region_id,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
self.prepped_frame_queue.put(resize_request)
|
||||
@@ -2,82 +2,404 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import prctl
|
||||
import itertools
|
||||
import copy
|
||||
import numpy as np
|
||||
from . util import draw_box_with_label
|
||||
import multiprocessing as mp
|
||||
from collections import defaultdict
|
||||
from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("ObjectCleaner")
|
||||
while True:
|
||||
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
if not frame_time in self.camera.frame_cache:
|
||||
del self.camera.detected_objects[frame_time]
|
||||
|
||||
objects_deregistered = False
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
|
||||
# if the object is more than 10 seconds old
|
||||
# and not in the most recent frame, deregister
|
||||
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
|
||||
self.camera.object_tracker.deregister(id)
|
||||
objects_deregistered = True
|
||||
|
||||
if objects_deregistered:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
num_to_delete = 0
|
||||
class DetectedObjectsProcessor(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame = self.camera.detected_objects_queue.get()
|
||||
|
||||
objects = frame['detected_objects']
|
||||
|
||||
for raw_obj in objects:
|
||||
name = str(LABELS[raw_obj.label_id])
|
||||
|
||||
if not name in self.camera.objects_to_track:
|
||||
continue
|
||||
|
||||
obj = {
|
||||
'name': name,
|
||||
'score': float(raw_obj.score),
|
||||
'box': {
|
||||
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
},
|
||||
'region': {
|
||||
'xmin': frame['x_offset'],
|
||||
'ymin': frame['y_offset'],
|
||||
'xmax': frame['x_offset']+frame['size'],
|
||||
'ymax': frame['y_offset']+frame['size']
|
||||
},
|
||||
'frame_time': frame['frame_time'],
|
||||
'region_id': frame['region_id']
|
||||
}
|
||||
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
obj['clipped'] = False
|
||||
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
obj['clipped'] = True
|
||||
|
||||
# Compute the area
|
||||
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print(f"{frame['frame_time']} no remaining regions")
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
# Thread that checks finished frames for clipped objects and sends back
|
||||
# for processing if needed
|
||||
class RegionRefiner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.finished_frame_queue.get()
|
||||
|
||||
detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||
# print(f"{frame_time} finished")
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<2:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
detected_object_groups[obj['name']].append(obj)
|
||||
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
look_again = False
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||
for o in group]
|
||||
confidences = [o['score'] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
selected_objects.append(obj)
|
||||
if obj['clipped']:
|
||||
box = obj['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
if not frame_time in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame_time] = 1
|
||||
else:
|
||||
self.camera.regions_in_process[frame_time] += 1
|
||||
|
||||
# add it to the queue
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
self.camera.dynamic_region_fps.update()
|
||||
look_again = True
|
||||
|
||||
# if we are looking again, then this frame is not ready for processing
|
||||
if look_again:
|
||||
# remove the clipped objects
|
||||
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
|
||||
continue
|
||||
|
||||
# filter objects based on camera settings
|
||||
selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
|
||||
self.camera.detected_objects[frame_time] = selected_objects
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.last_processed_frame = self.camera.frame_queue.get()
|
||||
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
|
||||
|
||||
def filtered(self, obj):
|
||||
object_name = obj['name']
|
||||
|
||||
if object_name in self.camera.object_filters:
|
||||
obj_settings = self.camera.object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
|
||||
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.camera.mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than overlap
|
||||
if iou > overlap:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def find_group(self, new_obj, groups):
|
||||
for index, group in enumerate(groups):
|
||||
for obj in group:
|
||||
if self.has_overlap(new_obj, obj):
|
||||
return index
|
||||
return None
|
||||
|
||||
class ObjectTracker(threading.Thread):
|
||||
def __init__(self, camera, max_disappeared):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.tracked_objects = {}
|
||||
self.tracked_objects_lock = mp.Lock()
|
||||
self.most_recent_frame_time = None
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
with self.tracked_objects_lock:
|
||||
self.match_and_update(self.camera.detected_objects[frame_time])
|
||||
self.most_recent_frame_time = frame_time
|
||||
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
|
||||
if len(self.tracked_objects) > 0:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
def register(self, index, obj):
|
||||
id = "{}-{}".format(str(obj['frame_time']), index)
|
||||
obj['id'] = id
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||
|
||||
def add_history(self, obj):
|
||||
entry = {
|
||||
'score': obj['score'],
|
||||
'box': obj['box'],
|
||||
'region': obj['region'],
|
||||
'centroid': obj['centroid'],
|
||||
'frame_time': obj['frame_time']
|
||||
}
|
||||
if 'history' in obj:
|
||||
obj['history'].append(entry)
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
if len(new_objects) == 0:
|
||||
return
|
||||
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj['name']].append(obj)
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
|
||||
current_ids = [o['id'] for o in current_objects]
|
||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||
|
||||
# compute centroids of new objects
|
||||
for obj in group:
|
||||
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
||||
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
||||
obj['centroid'] = (centroid_x, centroid_y)
|
||||
|
||||
if len(current_objects) == 0:
|
||||
for index, obj in enumerate(group):
|
||||
self.register(index, obj)
|
||||
return
|
||||
|
||||
new_centroids = np.array([o['centroid'] for o in group])
|
||||
|
||||
# compute the distance between each pair of tracked
|
||||
# centroids and new centroids, respectively -- our
|
||||
# goal will be to match each new centroid to an existing
|
||||
# object centroid
|
||||
D = dist.cdist(current_centroids, new_centroids)
|
||||
|
||||
# in order to perform this matching we must (1) find the
|
||||
# smallest value in each row and then (2) sort the row
|
||||
# indexes based on their minimum values so that the row
|
||||
# with the smallest value is at the *front* of the index
|
||||
# list
|
||||
rows = D.min(axis=1).argsort()
|
||||
|
||||
# next, we perform a similar process on the columns by
|
||||
# finding the smallest value in each column and then
|
||||
# sorting using the previously computed row index list
|
||||
cols = D.argmin(axis=1)[rows]
|
||||
|
||||
# in order to determine if we need to update, register,
|
||||
# or deregister an object we need to keep track of which
|
||||
# of the rows and column indexes we have already examined
|
||||
usedRows = set()
|
||||
usedCols = set()
|
||||
|
||||
# loop over the combination of the (row, column) index
|
||||
# tuples
|
||||
for (row, col) in zip(rows, cols):
|
||||
# if we have already examined either the row or
|
||||
# column value before, ignore it
|
||||
if row in usedRows or col in usedCols:
|
||||
continue
|
||||
|
||||
# otherwise, grab the object ID for the current row,
|
||||
# set its new centroid, and reset the disappeared
|
||||
# counter
|
||||
objectID = current_ids[row]
|
||||
self.update(objectID, group[col])
|
||||
|
||||
# indicate that we have examined each of the row and
|
||||
# column indexes, respectively
|
||||
usedRows.add(row)
|
||||
usedCols.add(col)
|
||||
|
||||
# compute the column index we have NOT yet examined
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
# if D.shape[0] < D.shape[1]:
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
# make a copy of tracked objects
|
||||
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
|
||||
for obj in detected_objects:
|
||||
for obj in tracked_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
self.best_objects[obj['name']] = obj
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
else:
|
||||
self.best_objects[obj['name']] = obj
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
||||
if obj['frame_time'] in self.camera.frame_cache:
|
||||
best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
|
||||
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
|
||||
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
self.best_frames[name] = best_frame
|
||||
125
frigate/util.py
125
frigate/util.py
@@ -1,5 +1,8 @@
|
||||
import datetime
|
||||
import collections
|
||||
import numpy as np
|
||||
import cv2
|
||||
import threading
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Function to read labels from text files.
|
||||
@@ -12,16 +15,73 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*2)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
return (size, x_offset, y_offset)
|
||||
|
||||
def compute_intersection_rectangle(box_a, box_b):
|
||||
return {
|
||||
'xmin': max(box_a['xmin'], box_b['xmin']),
|
||||
'ymin': max(box_a['ymin'], box_b['ymin']),
|
||||
'xmax': min(box_a['xmax'], box_b['xmax']),
|
||||
'ymax': min(box_a['ymax'], box_b['ymax'])
|
||||
}
|
||||
|
||||
def compute_intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = compute_intersection_rectangle(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
||||
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
|
||||
color = COLOR_MAP[label]
|
||||
display_text = "{}: {}% {}".format(label,int(score*100),int(area))
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = COLOR_MAP[label]
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, 2)
|
||||
color, thickness)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
@@ -30,8 +90,18 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
|
||||
text_height = size[0][1]
|
||||
line_height = text_height + size[1]
|
||||
# set the text start position
|
||||
text_offset_x = x_min
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
if position == 'ul':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'ur':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||
elif position == 'bl':
|
||||
text_offset_x = x_min
|
||||
text_offset_y = y_max
|
||||
elif position == 'br':
|
||||
text_offset_x = x_max - (text_width+8)
|
||||
text_offset_y = y_max
|
||||
# make the coords of the box with a small padding of two pixels
|
||||
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
@@ -47,4 +117,45 @@ cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
class QueueMerger():
|
||||
def __init__(self, from_queues, to_queue):
|
||||
self.from_queues = from_queues
|
||||
self.to_queue = to_queue
|
||||
self.merge_threads = []
|
||||
|
||||
def start(self):
|
||||
for from_q in self.from_queues:
|
||||
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
|
||||
|
||||
class QueueTransfer(threading.Thread):
|
||||
def __init__(self, from_queue, to_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.from_queue = from_queue
|
||||
self.to_queue = to_queue
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
self.to_queue.put(self.from_queue.get())
|
||||
|
||||
class EventsPerSecond:
|
||||
def __init__(self, max_events=1000):
|
||||
self._start = None
|
||||
self._max_events = max_events
|
||||
self._timestamps = []
|
||||
|
||||
def start(self):
|
||||
self._start = datetime.datetime.now().timestamp()
|
||||
|
||||
def update(self):
|
||||
self._timestamps.append(datetime.datetime.now().timestamp())
|
||||
# truncate the list when it goes 100 over the max_size
|
||||
if len(self._timestamps) > self._max_events+100:
|
||||
self._timestamps = self._timestamps[(1-self._max_events):]
|
||||
|
||||
def eps(self, last_n_seconds=10):
|
||||
# compute the (approximate) events in the last n seconds
|
||||
now = datetime.datetime.now().timestamp()
|
||||
seconds = min(now-self._start, last_n_seconds)
|
||||
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
||||
|
||||
285
frigate/video.py
285
frigate/video.py
@@ -2,49 +2,43 @@ import os
|
||||
import time
|
||||
import datetime
|
||||
import cv2
|
||||
import queue
|
||||
import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import prctl
|
||||
import copy
|
||||
import itertools
|
||||
from collections import defaultdict
|
||||
from . util import tonumpyarray, draw_box_with_label
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, BestFrames
|
||||
from . mqtt import MqttObjectPublisher
|
||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
||||
from frigate.object_detection import RegionPrepper, RegionRequester
|
||||
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
||||
from frigate.mqtt import MqttObjectPublisher
|
||||
|
||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
||||
# Stores 2 seconds worth of frames so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# lock and make a copy of the frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# add the frame to recent frames
|
||||
self.recent_frames[frame_time] = frame
|
||||
self.frame_ready.wait()
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
stored_frame_times.sort(reverse=True)
|
||||
if len(stored_frame_times) > 100:
|
||||
frames_to_delete = stored_frame_times[50:]
|
||||
for k in frames_to_delete:
|
||||
del self.recent_frames[k]
|
||||
|
||||
def get_frame_shape(source):
|
||||
@@ -66,13 +60,13 @@ class CameraWatchdog(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
|
||||
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
||||
print("last frame is more than 5 minutes old, restarting camera capture...")
|
||||
if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
||||
print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
|
||||
self.camera.start_or_restart_capture()
|
||||
time.sleep(5)
|
||||
|
||||
@@ -83,16 +77,17 @@ class CameraCapture(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.camera.ffmpeg_process.poll() != None:
|
||||
print("ffmpeg process is not running. exiting capture thread...")
|
||||
print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
|
||||
break
|
||||
|
||||
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
||||
|
||||
if len(raw_image) == 0:
|
||||
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
break
|
||||
|
||||
frame_num += 1
|
||||
@@ -100,23 +95,51 @@ class CameraCapture(threading.Thread):
|
||||
continue
|
||||
|
||||
with self.camera.frame_lock:
|
||||
# TODO: use frame_queue instead
|
||||
self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
||||
|
||||
self.camera.current_frame[:] = (
|
||||
self.camera.frame_cache[self.camera.frame_time.value] = (
|
||||
np
|
||||
.frombuffer(raw_image, np.uint8)
|
||||
.reshape(self.camera.frame_shape)
|
||||
)
|
||||
self.camera.frame_queue.put(self.camera.frame_time.value)
|
||||
# Notify with the condition that a new frame is ready
|
||||
with self.camera.frame_ready:
|
||||
self.camera.frame_ready.notify_all()
|
||||
|
||||
self.camera.fps.update()
|
||||
|
||||
class VideoWriter(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
(frame_time, tracked_objects) = self.camera.frame_output_queue.get()
|
||||
# if len(tracked_objects) == 0:
|
||||
# continue
|
||||
# f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
|
||||
# f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
|
||||
# f.close()
|
||||
|
||||
class Camera:
|
||||
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.recent_frames = {}
|
||||
self.detected_objects = defaultdict(lambda: [])
|
||||
self.frame_cache = {}
|
||||
self.last_processed_frame = None
|
||||
# queue for re-assembling frames in order
|
||||
self.frame_queue = queue.Queue()
|
||||
# track how many regions have been requested for a frame so we know when a frame is complete
|
||||
self.regions_in_process = {}
|
||||
# Lock to control access
|
||||
self.regions_in_process_lock = mp.Lock()
|
||||
self.finished_frame_queue = queue.Queue()
|
||||
self.refined_frame_queue = queue.Queue()
|
||||
self.frame_output_queue = queue.Queue()
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
@@ -134,17 +157,23 @@ class Camera:
|
||||
self.mqtt_client = mqtt_client
|
||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# create a numpy array for the current frame in initialize to zeros
|
||||
self.current_frame = np.zeros(self.frame_shape, np.uint8)
|
||||
# create shared value for storing the frame_time
|
||||
self.frame_time = mp.Value('d', 0.0)
|
||||
# Lock to control access to the frame
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
self.objects_parsed = mp.Condition()
|
||||
|
||||
# Condition for notifying that objects were tracked
|
||||
self.objects_tracked = mp.Condition()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of regions * 5)
|
||||
self.resize_queue = queue.Queue()
|
||||
|
||||
# Queue for raw detected objects
|
||||
self.detected_objects_queue = queue.Queue()
|
||||
self.detected_objects_processor = DetectedObjectsProcessor(self)
|
||||
self.detected_objects_processor.start()
|
||||
|
||||
# initialize the frame cache
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': [],
|
||||
@@ -153,44 +182,57 @@ class Camera:
|
||||
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
self.fps = EventsPerSecond()
|
||||
self.skipped_region_tracker = EventsPerSecond()
|
||||
|
||||
# for each region, create a separate thread to resize the region and prep for detection
|
||||
self.detection_prep_threads = []
|
||||
for index, region in enumerate(self.config['regions']):
|
||||
region_objects = region.get('objects', {})
|
||||
# build objects config for region
|
||||
objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
|
||||
merged_objects_config = defaultdict(lambda: {})
|
||||
for obj in objects_with_config:
|
||||
merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
|
||||
|
||||
region['objects'] = merged_objects_config
|
||||
# combine tracked objects lists
|
||||
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
|
||||
self.detection_prep_threads.append(FramePrepper(
|
||||
self.name,
|
||||
self.current_frame,
|
||||
self.frame_time,
|
||||
self.frame_ready,
|
||||
self.frame_lock,
|
||||
region['size'], region['x_offset'], region['y_offset'], index,
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
# start a thread to store recent motion frames for processing
|
||||
self.frame_tracker = FrameTracker(self.current_frame, self.frame_time,
|
||||
self.frame_ready, self.frame_lock, self.recent_frames)
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
self.object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
# start a thread to track objects
|
||||
self.object_tracker = ObjectTracker(self, 10)
|
||||
self.object_tracker.start()
|
||||
|
||||
# start a thread to write tracked frames to disk
|
||||
self.video_writer = VideoWriter(self)
|
||||
self.video_writer.start()
|
||||
|
||||
# start a thread to queue resize requests for regions
|
||||
self.region_requester = RegionRequester(self)
|
||||
self.region_requester.start()
|
||||
|
||||
# start a thread to cache recent frames for processing
|
||||
self.frame_tracker = FrameTracker(self.frame_time,
|
||||
self.frame_ready, self.frame_lock, self.frame_cache)
|
||||
self.frame_tracker.start()
|
||||
|
||||
# start a thread to resize regions
|
||||
self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
|
||||
self.region_prepper.start()
|
||||
|
||||
# start a thread to store the highest scoring recent frames for monitored object types
|
||||
self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
|
||||
self.best_frames = BestFrames(self)
|
||||
self.best_frames.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner = ObjectCleaner(self)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to refine regions when objects are clipped
|
||||
self.dynamic_region_fps = EventsPerSecond()
|
||||
self.region_refiner = RegionRefiner(self)
|
||||
self.region_refiner.start()
|
||||
self.dynamic_region_fps.start()
|
||||
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
@@ -232,6 +274,8 @@ class Camera:
|
||||
self.capture_thread = CameraCapture(self)
|
||||
print("Starting a new capture thread...")
|
||||
self.capture_thread.start()
|
||||
self.fps.start()
|
||||
self.skipped_region_tracker.start()
|
||||
|
||||
def start_ffmpeg(self):
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
@@ -248,9 +292,6 @@ class Camera:
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
# start the object detection prep threads
|
||||
for detection_prep_thread in self.detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
self.watchdog.start()
|
||||
|
||||
def join(self):
|
||||
@@ -259,85 +300,54 @@ class Camera:
|
||||
def get_capture_pid(self):
|
||||
return self.ffmpeg_process.pid
|
||||
|
||||
def add_objects(self, objects):
|
||||
if len(objects) == 0:
|
||||
return
|
||||
|
||||
for obj in objects:
|
||||
# find the matching region
|
||||
region = self.regions[obj['region_id']]
|
||||
|
||||
# Compute some extra properties
|
||||
obj.update({
|
||||
'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
|
||||
'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
|
||||
'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
|
||||
'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
|
||||
})
|
||||
|
||||
# Compute the area
|
||||
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
|
||||
object_name = obj['name']
|
||||
|
||||
if object_name in region['objects']:
|
||||
obj_settings = region['objects'][object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
continue
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
||||
continue
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
continue
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.mask[y_location][x_location] == [0]:
|
||||
continue
|
||||
|
||||
self.detected_objects.append(obj)
|
||||
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.notify_all()
|
||||
|
||||
def get_best(self, label):
|
||||
return self.best_frames.best_frames.get(label)
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with self.frame_lock:
|
||||
frame = self.current_frame.copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
def stats(self):
|
||||
return {
|
||||
'camera_fps': self.fps.eps(60),
|
||||
'resize_queue': self.resize_queue.qsize(),
|
||||
'frame_queue': self.frame_queue.qsize(),
|
||||
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
'regions_in_process': self.regions_in_process,
|
||||
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
|
||||
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
|
||||
}
|
||||
|
||||
def frame_with_objects(self, frame_time, tracked_objects=None):
|
||||
if not frame_time in self.frame_cache:
|
||||
frame = np.zeros(self.frame_shape, np.uint8)
|
||||
else:
|
||||
frame = self.frame_cache[frame_time].copy()
|
||||
|
||||
detected_objects = self.detected_objects[frame_time].copy()
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
|
||||
if tracked_objects is None:
|
||||
with self.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
|
||||
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
|
||||
|
||||
for id, obj in tracked_objects.items():
|
||||
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# print fps
|
||||
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
@@ -345,7 +355,14 @@ class Camera:
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
frame_bytes = jpg.tobytes()
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
frame_time = self.last_processed_frame
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
frame_bytes = self.frame_with_objects(frame_time)
|
||||
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': frame_bytes,
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
CPU_ARCH=$(uname -m)
|
||||
OS_VERSION=$(uname -v)
|
||||
|
||||
echo "CPU_ARCH ${CPU_ARCH}"
|
||||
echo "OS_VERSION ${OS_VERSION}"
|
||||
|
||||
if [[ "${CPU_ARCH}" == "x86_64" ]]; then
|
||||
echo "Recognized as Linux on x86_64."
|
||||
LIBEDGETPU_SUFFIX=x86_64
|
||||
HOST_GNU_TYPE=x86_64-linux-gnu
|
||||
elif [[ "${CPU_ARCH}" == "armv7l" ]]; then
|
||||
echo "Recognized as Linux on ARM32 platform."
|
||||
LIBEDGETPU_SUFFIX=arm32
|
||||
HOST_GNU_TYPE=arm-linux-gnueabihf
|
||||
elif [[ "${CPU_ARCH}" == "aarch64" ]]; then
|
||||
echo "Recognized as generic ARM64 platform."
|
||||
LIBEDGETPU_SUFFIX=arm64
|
||||
HOST_GNU_TYPE=aarch64-linux-gnu
|
||||
fi
|
||||
|
||||
if [[ -z "${HOST_GNU_TYPE}" ]]; then
|
||||
echo "Your platform is not supported."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Using maximum operating frequency."
|
||||
LIBEDGETPU_SRC="libedgetpu/libedgetpu_${LIBEDGETPU_SUFFIX}.so"
|
||||
LIBEDGETPU_DST="/usr/lib/${HOST_GNU_TYPE}/libedgetpu.so.1.0"
|
||||
|
||||
# Runtime library.
|
||||
echo "Installing Edge TPU runtime library [${LIBEDGETPU_DST}]..."
|
||||
if [[ -f "${LIBEDGETPU_DST}" ]]; then
|
||||
echo "File already exists. Replacing it..."
|
||||
rm -f "${LIBEDGETPU_DST}"
|
||||
fi
|
||||
|
||||
cp -p "${LIBEDGETPU_SRC}" "${LIBEDGETPU_DST}"
|
||||
ldconfig
|
||||
echo "Done."
|
||||
|
||||
# Python API.
|
||||
WHEEL=$(ls edgetpu-*-py3-none-any.whl 2>/dev/null)
|
||||
if [[ $? == 0 ]]; then
|
||||
echo "Installing Edge TPU Python API..."
|
||||
python3 -m pip install --no-deps "${WHEEL}"
|
||||
echo "Done."
|
||||
fi
|
||||
@@ -1,5 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys D986B59D
|
||||
|
||||
echo "deb http://deb.odroid.in/5422-s bionic main" > /etc/apt/sources.list.d/odroid.list
|
||||
Reference in New Issue
Block a user