mirror of
https://github.com/hajimehoshi/ebiten.git
synced 2025-09-26 20:11:28 +08:00
1194 lines
32 KiB
Go
1194 lines
32 KiB
Go
// Copyright 2019 The Ebiten Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Package vector provides functions for vector graphics rendering.
|
|
//
|
|
// This package is under experiments and the API might be changed with breaking backward compatibility.
|
|
package vector
|
|
|
|
import (
|
|
"image"
|
|
"math"
|
|
"slices"
|
|
|
|
"github.com/hajimehoshi/ebiten/v2"
|
|
)
|
|
|
|
// Direction represents clockwise or counterclockwise.
|
|
type Direction int
|
|
|
|
const (
|
|
Clockwise Direction = iota
|
|
CounterClockwise
|
|
)
|
|
|
|
type opType int
|
|
|
|
const (
|
|
opTypeLineTo opType = iota
|
|
opTypeQuadTo
|
|
)
|
|
|
|
type op struct {
|
|
typ opType
|
|
p1 point
|
|
p2 point
|
|
}
|
|
|
|
func abs(x float32) float32 {
|
|
if x < 0 {
|
|
return -x
|
|
}
|
|
return x
|
|
}
|
|
|
|
const epsilon = 1e-6
|
|
|
|
type point struct {
|
|
x float32
|
|
y float32
|
|
}
|
|
|
|
func (p point) add(v vec2) point {
|
|
return point{x: p.x + v.x, y: p.y + v.y}
|
|
}
|
|
|
|
type vec2 struct {
|
|
x, y float32
|
|
}
|
|
|
|
func (v vec2) perp() vec2 {
|
|
return vec2{x: -v.y, y: v.x}
|
|
}
|
|
|
|
func (v vec2) inv() vec2 {
|
|
return vec2{x: -v.x, y: -v.y}
|
|
}
|
|
|
|
func (v vec2) len() float32 {
|
|
return float32(math.Hypot(float64(v.x), float64(v.y)))
|
|
}
|
|
|
|
func (v vec2) norm() vec2 {
|
|
len := v.len()
|
|
if len == 0 {
|
|
return vec2{float32(math.NaN()), float32(math.NaN())}
|
|
}
|
|
return vec2{v.x / len, v.y / len}
|
|
}
|
|
|
|
func (v vec2) mul(s float32) vec2 {
|
|
return vec2{x: s * v.x, y: s * v.y}
|
|
}
|
|
|
|
type subPath struct {
|
|
ops []op
|
|
start point
|
|
closed bool
|
|
cachedValid bool
|
|
isCachedValidValid bool
|
|
}
|
|
|
|
func (s *subPath) reset() {
|
|
s.ops = s.ops[:0]
|
|
s.start = point{}
|
|
s.closed = false
|
|
s.cachedValid = false
|
|
s.isCachedValidValid = false
|
|
}
|
|
|
|
func isRegularF32(x float32) bool {
|
|
return !math.IsNaN(float64(x)) && !math.IsInf(float64(x), 0)
|
|
}
|
|
|
|
func (s *subPath) isValid() bool {
|
|
if s.isCachedValidValid {
|
|
return s.cachedValid
|
|
}
|
|
|
|
if !isRegularF32(s.start.x) || !isRegularF32(s.start.y) {
|
|
s.cachedValid = false
|
|
s.isCachedValidValid = true
|
|
return false
|
|
}
|
|
for _, op := range s.ops {
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
if !isRegularF32(op.p1.x) || !isRegularF32(op.p1.y) {
|
|
s.cachedValid = false
|
|
s.isCachedValidValid = true
|
|
return false
|
|
}
|
|
case opTypeQuadTo:
|
|
if !isRegularF32(op.p1.x) || !isRegularF32(op.p1.y) || !isRegularF32(op.p2.x) || !isRegularF32(op.p2.y) {
|
|
s.cachedValid = false
|
|
s.isCachedValidValid = true
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
s.cachedValid = true
|
|
s.isCachedValidValid = true
|
|
return true
|
|
}
|
|
|
|
func (s *subPath) startAtOp(index int) point {
|
|
if index == 0 {
|
|
return s.start
|
|
}
|
|
return s.endAtOp(index - 1)
|
|
}
|
|
|
|
func (s *subPath) endAtOp(index int) point {
|
|
op := s.ops[index]
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
return op.p1
|
|
case opTypeQuadTo:
|
|
return op.p2
|
|
}
|
|
panic("not reached")
|
|
}
|
|
|
|
func (s *subPath) startDir(index int) vec2 {
|
|
p := s.startAtOp(index)
|
|
op := s.ops[index]
|
|
return vec2{x: op.p1.x - p.x, y: op.p1.y - p.y}
|
|
}
|
|
|
|
func (s *subPath) endDir(index int) vec2 {
|
|
switch op := s.ops[index]; op.typ {
|
|
case opTypeLineTo:
|
|
return s.startDir(index)
|
|
case opTypeQuadTo:
|
|
return vec2{x: op.p2.x - op.p1.x, y: op.p2.y - op.p1.y}
|
|
}
|
|
panic("not reached")
|
|
}
|
|
|
|
// flatPath is a flattened sub-path of a path.
|
|
// A flatPath consists of points for line segments.
|
|
type flatPath struct {
|
|
points []point
|
|
closed bool
|
|
}
|
|
|
|
// reset resets the flatPath.
|
|
// reset doesn't release the allocated memory so that the memory can be reused.
|
|
func (f *flatPath) reset() {
|
|
f.points = f.points[:0]
|
|
f.closed = false
|
|
}
|
|
|
|
func (f flatPath) pointCount() int {
|
|
return len(f.points)
|
|
}
|
|
|
|
func (f flatPath) lastPoint() point {
|
|
return f.points[len(f.points)-1]
|
|
}
|
|
|
|
func (f *flatPath) appendPoint(pt point) {
|
|
if f.closed {
|
|
panic("vector: a closed flatPath cannot append a new point")
|
|
}
|
|
|
|
if len(f.points) > 0 {
|
|
// Do not add a too close point to the last point.
|
|
// This can cause unexpected rendering results.
|
|
if lp := f.lastPoint(); abs(lp.x-pt.x) < 1e-2 && abs(lp.y-pt.y) < 1e-2 {
|
|
return
|
|
}
|
|
}
|
|
|
|
f.points = append(f.points, pt)
|
|
}
|
|
|
|
func (f *flatPath) close() {
|
|
f.closed = true
|
|
}
|
|
|
|
// Path represents a collection of vector graphics operations.
|
|
type Path struct {
|
|
subPaths []subPath
|
|
|
|
// flatPaths is a cached actual rendering positions.
|
|
// flatPaths is used only for deprecated functions. Do not use this for new functions.
|
|
flatPaths []flatPath
|
|
}
|
|
|
|
// Reset resets the path.
|
|
// Reset doesn't release the allocated memory so that the memory can be reused.
|
|
func (p *Path) Reset() {
|
|
p.resetSubPaths()
|
|
p.resetFlatPaths()
|
|
}
|
|
|
|
func (p *Path) resetSubPaths() {
|
|
for i := range p.subPaths {
|
|
p.subPaths[i].reset()
|
|
}
|
|
p.subPaths = p.subPaths[:0]
|
|
}
|
|
|
|
func (p *Path) resetFlatPaths() {
|
|
for _, fp := range p.flatPaths {
|
|
fp.reset()
|
|
}
|
|
p.flatPaths = p.flatPaths[:0]
|
|
}
|
|
|
|
func (p *Path) resetLastSubPathCacheStates() {
|
|
if len(p.subPaths) == 0 {
|
|
return
|
|
}
|
|
s := &p.subPaths[len(p.subPaths)-1]
|
|
s.cachedValid = false
|
|
s.isCachedValidValid = false
|
|
}
|
|
|
|
func (p *Path) appendNewFlatPath(pt point) {
|
|
if cap(p.flatPaths) > len(p.flatPaths) {
|
|
// Reuse the last flat path since the last flat path might have an already allocated slice.
|
|
p.flatPaths = p.flatPaths[:len(p.flatPaths)+1]
|
|
p.flatPaths[len(p.flatPaths)-1].reset()
|
|
p.flatPaths[len(p.flatPaths)-1].appendPoint(pt)
|
|
return
|
|
}
|
|
p.flatPaths = append(p.flatPaths, flatPath{
|
|
points: []point{pt},
|
|
})
|
|
}
|
|
|
|
func (p *Path) ensureFlatPaths() []flatPath {
|
|
if len(p.flatPaths) > 0 || len(p.subPaths) == 0 {
|
|
return p.flatPaths
|
|
}
|
|
|
|
for _, subPath := range p.subPaths {
|
|
p.appendNewFlatPath(subPath.start)
|
|
cur := subPath.start
|
|
for _, op := range subPath.ops {
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
p.appendFlatPathPointsForLine(op.p1)
|
|
cur = op.p1
|
|
case opTypeQuadTo:
|
|
p.appendFlatPathPointsForQuad(cur, op.p1, op.p2, 0)
|
|
cur = op.p2
|
|
}
|
|
}
|
|
if subPath.closed {
|
|
p.closeFlatPath()
|
|
}
|
|
}
|
|
|
|
return p.flatPaths
|
|
}
|
|
|
|
func (p *Path) addSubPaths(n int) {
|
|
// Use slices.Grow instead of append to reuse the underlying sub path object.
|
|
p.subPaths = slices.Grow(p.subPaths, n)[:len(p.subPaths)+n]
|
|
}
|
|
|
|
// MoveTo starts a new sub-path with the given position (x, y) without adding a sub-path,
|
|
func (p *Path) MoveTo(x, y float32) {
|
|
p.resetFlatPaths()
|
|
|
|
// Always update the start position.
|
|
if len(p.subPaths) == 0 || len(p.subPaths[len(p.subPaths)-1].ops) > 0 {
|
|
p.addSubPaths(1)
|
|
}
|
|
p.resetLastSubPathCacheStates()
|
|
p.subPaths[len(p.subPaths)-1].start = point{x: x, y: y}
|
|
p.subPaths[len(p.subPaths)-1].closed = false
|
|
}
|
|
|
|
// LineTo adds a line segment to the path, which starts from the last position of the current sub-path
|
|
// and ends to the given position (x, y).
|
|
// If p doesn't have any sub-paths or the last sub-path is closed, LineTo sets (x, y) as the start position of a new sub-path.
|
|
func (p *Path) LineTo(x, y float32) {
|
|
p.resetFlatPaths()
|
|
|
|
if len(p.subPaths) == 0 {
|
|
p.addSubPaths(1)
|
|
p.subPaths[len(p.subPaths)-1].start = point{x: x, y: y}
|
|
} else if p.subPaths[len(p.subPaths)-1].closed {
|
|
p.addSubPaths(1)
|
|
p.subPaths[len(p.subPaths)-1].start = p.subPaths[len(p.subPaths)-2].start
|
|
}
|
|
p.resetLastSubPathCacheStates()
|
|
if cur, ok := p.currentPosition(); ok {
|
|
if cur.x == x && cur.y == y {
|
|
return
|
|
}
|
|
}
|
|
p.subPaths[len(p.subPaths)-1].ops = append(p.subPaths[len(p.subPaths)-1].ops, op{
|
|
typ: opTypeLineTo,
|
|
p1: point{x: x, y: y},
|
|
})
|
|
}
|
|
|
|
// QuadTo adds a quadratic Bézier curve to the path.
|
|
// (x1, y1) is the control point, and (x2, y2) is the destination.
|
|
func (p *Path) QuadTo(x1, y1, x2, y2 float32) {
|
|
p.resetFlatPaths()
|
|
|
|
if len(p.subPaths) == 0 {
|
|
p.addSubPaths(1)
|
|
p.subPaths[len(p.subPaths)-1].start = point{x: x1, y: y1}
|
|
} else if p.subPaths[len(p.subPaths)-1].closed {
|
|
p.addSubPaths(1)
|
|
p.subPaths[len(p.subPaths)-1].start = p.subPaths[len(p.subPaths)-2].start
|
|
}
|
|
p.resetLastSubPathCacheStates()
|
|
if cur, ok := p.currentPosition(); ok {
|
|
if cur.x == x2 && cur.y == y2 {
|
|
return
|
|
}
|
|
}
|
|
p.subPaths[len(p.subPaths)-1].ops = append(p.subPaths[len(p.subPaths)-1].ops, op{
|
|
typ: opTypeQuadTo,
|
|
p1: point{x: x1, y: y1},
|
|
p2: point{x: x2, y: y2},
|
|
})
|
|
}
|
|
|
|
// CubicTo adds a cubic Bézier curve to the path.
|
|
// (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination.
|
|
func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) {
|
|
cur, ok := p.currentPosition()
|
|
if !ok {
|
|
cur = point{x: x1, y: y1}
|
|
}
|
|
minX := min(cur.x, x1, x2, x3)
|
|
maxX := max(cur.x, x1, x2, x3)
|
|
minY := min(cur.y, y1, y2, y3)
|
|
maxY := max(cur.y, y1, y2, y3)
|
|
allowance := max(maxX-minX, maxY-minY) / 1024
|
|
p.cubicTo(x1, y1, x2, y2, x3, y3, 0, allowance)
|
|
}
|
|
|
|
func (p *Path) cubicTo(x1, y1, x2, y2, x3, y3 float32, level int, allowance float32) {
|
|
cur, ok := p.currentPosition()
|
|
if !ok {
|
|
cur = point{x: x1, y: y1}
|
|
}
|
|
|
|
// Approximate a cubic Bézier curve to a quadratic Bézier curve.
|
|
// Assume that P0, P1, P2, and P3 are the control points of the cubic Bézier curve C.
|
|
// mid is the middle control point of the quadratic Bézier curve Q.
|
|
// mid equals to 2 * Q(0.5) - (1/2)*(P0 + P3).
|
|
// If Q(0.5) = C(0.5) = (1/8)*(P0 + 3*P1 + 3*P2 + P3), mid will be (1/4)*(-P0 + 3*P1 + 3*P2 + -P3).
|
|
p0 := cur
|
|
p1 := point{x: x1, y: y1}
|
|
p2 := point{x: x2, y: y2}
|
|
p3 := point{x: x3, y: y3}
|
|
m := point{
|
|
x: -0.25*p0.x + 0.75*p1.x + 0.75*p2.x - 0.25*p3.x,
|
|
y: -0.25*p0.y + 0.75*p1.y + 0.75*p2.y - 0.25*p3.y,
|
|
}
|
|
if level > 5 || isQuadraticCloseEnoughToCubic(p0, p3, m, p1, p2, allowance) {
|
|
p.QuadTo(m.x, m.y, p3.x, p3.y)
|
|
return
|
|
}
|
|
|
|
// If any of the points is not a regular float32, do not call this function recursively.
|
|
if !isRegularF32(cur.x) || !isRegularF32(cur.y) || !isRegularF32(x1) || !isRegularF32(y1) || !isRegularF32(x2) || !isRegularF32(y2) || !isRegularF32(x3) || !isRegularF32(y3) {
|
|
p.QuadTo(m.x, m.y, p3.x, p3.y)
|
|
return
|
|
}
|
|
|
|
// Split the cubic Bézier curve into two by De Casteljau's algorithm.
|
|
p01 := point{
|
|
x: (p0.x + p1.x) / 2,
|
|
y: (p0.y + p1.y) / 2,
|
|
}
|
|
p12 := point{
|
|
x: (p1.x + p2.x) / 2,
|
|
y: (p1.y + p2.y) / 2,
|
|
}
|
|
p23 := point{
|
|
x: (p2.x + p3.x) / 2,
|
|
y: (p2.y + p3.y) / 2,
|
|
}
|
|
p012 := point{
|
|
x: (p01.x + p12.x) / 2,
|
|
y: (p01.y + p12.y) / 2,
|
|
}
|
|
p123 := point{
|
|
x: (p12.x + p23.x) / 2,
|
|
y: (p12.y + p23.y) / 2,
|
|
}
|
|
p0123 := point{
|
|
x: (p012.x + p123.x) / 2,
|
|
y: (p012.y + p123.y) / 2,
|
|
}
|
|
p.cubicTo(p01.x, p01.y, p012.x, p012.y, p0123.x, p0123.y, level+1, allowance)
|
|
p.cubicTo(p123.x, p123.y, p23.x, p23.y, p3.x, p3.y, level+1, allowance)
|
|
}
|
|
|
|
func isQuadraticCloseEnoughToCubic(start, end, qc1, cc1, cc2 point, allowance float32) bool {
|
|
for _, t := range []float32{0.25, 0.75} {
|
|
q := point{
|
|
x: (1-t)*(1-t)*start.x + 2*(1-t)*t*qc1.x + t*t*end.x,
|
|
y: (1-t)*(1-t)*start.y + 2*(1-t)*t*qc1.y + t*t*end.y,
|
|
}
|
|
c := point{
|
|
x: (1-t)*(1-t)*(1-t)*start.x + 3*(1-t)*(1-t)*t*cc1.x + 3*(1-t)*t*t*cc2.x + t*t*t*end.x,
|
|
y: (1-t)*(1-t)*(1-t)*start.y + 3*(1-t)*(1-t)*t*cc1.y + 3*(1-t)*t*t*cc2.y + t*t*t*end.y,
|
|
}
|
|
if !arePointsInRange(q, c, 0, allowance) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func arePointsInRange(p0, p1 point, allowanceMin, allowanceMax float32) bool {
|
|
d := (p0.x-p1.x)*(p0.x-p1.x) + (p0.y-p1.y)*(p0.y-p1.y)
|
|
return d >= allowanceMin*allowanceMin && d <= allowanceMax*allowanceMax
|
|
}
|
|
|
|
// Close adds a new line from the last position of the current sub-path to the first position of the current sub-path,
|
|
// and marks the current sub-path closed.
|
|
// Following operations for this path will start with a new sub-path.
|
|
func (p *Path) Close() {
|
|
p.resetFlatPaths()
|
|
|
|
if len(p.subPaths) == 0 {
|
|
return
|
|
}
|
|
if len(p.subPaths[len(p.subPaths)-1].ops) > 0 {
|
|
subPath := &p.subPaths[len(p.subPaths)-1]
|
|
start := subPath.start
|
|
p.LineTo(start.x, start.y)
|
|
}
|
|
p.subPaths[len(p.subPaths)-1].closed = true
|
|
}
|
|
|
|
func (p *Path) appendFlatPathPointsForLine(pt point) {
|
|
if len(p.flatPaths) == 0 || p.flatPaths[len(p.flatPaths)-1].closed {
|
|
p.appendNewFlatPath(pt)
|
|
return
|
|
}
|
|
p.flatPaths[len(p.flatPaths)-1].appendPoint(pt)
|
|
}
|
|
|
|
// lineForTwoPoints returns parameters for a line passing through p0 and p1.
|
|
func lineForTwoPoints(p0, p1 point) (a, b, c float32) {
|
|
// Line passing through p0 and p1 in the form of ax + by + c = 0
|
|
a = p1.y - p0.y
|
|
b = -(p1.x - p0.x)
|
|
c = (p1.x-p0.x)*p0.y - (p1.y-p0.y)*p0.x
|
|
return
|
|
}
|
|
|
|
// isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow.
|
|
// If p0 and p1 are the same, isPointCloseToSegment returns true when the distance between p0 and p is less than allow.
|
|
func isPointCloseToSegment(p, p0, p1 point, allow float32) bool {
|
|
if p0 == p1 {
|
|
return allow*allow >= (p0.x-p.x)*(p0.x-p.x)+(p0.y-p.y)*(p0.y-p.y)
|
|
}
|
|
|
|
a, b, c := lineForTwoPoints(p0, p1)
|
|
|
|
// The distance between a line ax+by+c=0 and (x0, y0) is
|
|
// |ax0 + by0 + c| / √(a² + b²)
|
|
return allow*allow*(a*a+b*b) >= (a*p.x+b*p.y+c)*(a*p.x+b*p.y+c)
|
|
}
|
|
|
|
// crossingPointForTwoLines returns a crossing point for two lines.
|
|
func crossingPointForTwoLines(p00, p01, p10, p11 point) point {
|
|
a0, b0, c0 := lineForTwoPoints(p00, p01)
|
|
a1, b1, c1 := lineForTwoPoints(p10, p11)
|
|
det := a0*b1 - a1*b0
|
|
|
|
// If det is close to 0, the two lines are almost parallel.
|
|
if abs(det) < epsilon {
|
|
return point{
|
|
x: float32(math.NaN()),
|
|
y: float32(math.NaN()),
|
|
}
|
|
}
|
|
|
|
return point{
|
|
x: (b0*c1 - b1*c0) / det,
|
|
y: (a1*c0 - a0*c1) / det,
|
|
}
|
|
}
|
|
|
|
func (p *Path) appendFlatPathPointsForQuad(p0, p1, p2 point, level int) {
|
|
if level > 10 {
|
|
return
|
|
}
|
|
|
|
if isPointCloseToSegment(p1, p0, p2, 0.5) {
|
|
p.appendFlatPathPointsForLine(p2)
|
|
return
|
|
}
|
|
|
|
p01 := point{
|
|
x: (p0.x + p1.x) / 2,
|
|
y: (p0.y + p1.y) / 2,
|
|
}
|
|
p12 := point{
|
|
x: (p1.x + p2.x) / 2,
|
|
y: (p1.y + p2.y) / 2,
|
|
}
|
|
p012 := point{
|
|
x: (p01.x + p12.x) / 2,
|
|
y: (p01.y + p12.y) / 2,
|
|
}
|
|
p.appendFlatPathPointsForQuad(p0, p01, p012, level+1)
|
|
p.appendFlatPathPointsForQuad(p012, p12, p2, level+1)
|
|
}
|
|
|
|
func (p *Path) currentPosition() (point, bool) {
|
|
if len(p.subPaths) == 0 {
|
|
return point{}, false
|
|
}
|
|
ops := p.subPaths[len(p.subPaths)-1].ops
|
|
if len(ops) == 0 {
|
|
return p.subPaths[len(p.subPaths)-1].start, true
|
|
}
|
|
op := ops[len(ops)-1]
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
return op.p1, true
|
|
case opTypeQuadTo:
|
|
return op.p2, true
|
|
}
|
|
return point{}, false
|
|
}
|
|
|
|
// ArcTo adds an arc curve to the path.
|
|
// (x1, y1) is the first control point, and (x2, y2) is the second control point.
|
|
func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
|
|
p0, ok := p.currentPosition()
|
|
if !ok {
|
|
p0 = point{x: x1, y: y1}
|
|
}
|
|
|
|
// If the start and end points are too close, just add a line segment to avoid strange rendering results.
|
|
if arePointsInRange(p0, point{x: x2, y: y2}, 0, radius) {
|
|
p.LineTo(x2, y2)
|
|
return
|
|
}
|
|
|
|
d0 := vec2{
|
|
x: p0.x - x1,
|
|
y: p0.y - y1,
|
|
}
|
|
d1 := vec2{
|
|
x: x2 - x1,
|
|
y: y2 - y1,
|
|
}
|
|
if d0 == (vec2{}) || d1 == (vec2{}) {
|
|
p.LineTo(x1, y1)
|
|
return
|
|
}
|
|
|
|
d0 = d0.norm()
|
|
d1 = d1.norm()
|
|
|
|
// theta is the angle between two vectors d0 and d1.
|
|
theta := math.Acos(float64(d0.x*d1.x + d0.y*d1.y))
|
|
// TODO: When theta is bigger than π/2, the arc should be split into two.
|
|
if theta == 0 {
|
|
p.LineTo(x2, y2)
|
|
return
|
|
}
|
|
|
|
// dist is the distance between the control point and the arc's beginning and ending points.
|
|
dist := radius / float32(math.Tan(theta/2))
|
|
|
|
// TODO: What if dist is too big?
|
|
|
|
// (ax0, ay0) is the start of the arc.
|
|
ax0 := x1 + d0.x*dist
|
|
ay0 := y1 + d0.y*dist
|
|
|
|
var cx, cy, a0, a1 float32
|
|
var dir Direction
|
|
|
|
// A cross product can be calculated by d0.x*d1.y - d0.y*d1.x,
|
|
// but this can cause a floating-point precision issue due to FMSUBS.
|
|
// Avoid this subtraction.
|
|
//
|
|
// a*b - c*d can be translated into
|
|
// (1) x := c*d
|
|
// (2) y := a*b-x
|
|
// One rounding happens at (1). The number of rounding is not determined at (2).
|
|
// If FMSUBS is used for (2), only one rounding happens at (2) for the multiplying and the subtraction.
|
|
// Thus, even if a*b == c*d, y can be non-zero.
|
|
if d0.x*d1.y >= d0.y*d1.x {
|
|
cx = ax0 - d0.y*radius
|
|
cy = ay0 + d0.x*radius
|
|
a0 = float32(math.Atan2(float64(-d0.x), float64(d0.y)))
|
|
a1 = float32(math.Atan2(float64(d1.x), float64(-d1.y)))
|
|
dir = CounterClockwise
|
|
} else {
|
|
cx = ax0 + d0.y*radius
|
|
cy = ay0 - d0.x*radius
|
|
a0 = float32(math.Atan2(float64(d0.x), float64(-d0.y)))
|
|
a1 = float32(math.Atan2(float64(-d1.x), float64(d1.y)))
|
|
dir = Clockwise
|
|
}
|
|
p.Arc(cx, cy, radius, a0, a1, dir)
|
|
}
|
|
|
|
func euclideanMod(a, b float32) float32 {
|
|
return a - b*float32(math.Floor(float64(a)/float64(b)))
|
|
}
|
|
|
|
// Arc adds an arc to the path.
|
|
// (x, y) is the center of the arc.
|
|
func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) {
|
|
origStartAngle := startAngle
|
|
origEndAngle := endAngle
|
|
|
|
// Adjust the angles.
|
|
var da float64
|
|
if dir == Clockwise {
|
|
endAngle = startAngle + float32(euclideanMod(endAngle-startAngle, 2*math.Pi))
|
|
da = float64(endAngle - startAngle)
|
|
} else {
|
|
startAngle = endAngle + float32(euclideanMod(startAngle-endAngle, 2*math.Pi))
|
|
da = float64(startAngle - endAngle)
|
|
}
|
|
|
|
if da == 0 && origStartAngle != origEndAngle {
|
|
da = 2 * math.Pi
|
|
if dir == Clockwise {
|
|
endAngle = startAngle + 2*math.Pi
|
|
} else {
|
|
startAngle = endAngle + 2*math.Pi
|
|
}
|
|
}
|
|
|
|
// If the angle is big, splict this into multiple Arc calls.
|
|
if da > math.Pi/2 {
|
|
const delta = math.Pi / 3
|
|
a := float64(startAngle)
|
|
if dir == Clockwise {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir)
|
|
if a+delta >= float64(endAngle) {
|
|
break
|
|
}
|
|
a += delta
|
|
}
|
|
} else {
|
|
for {
|
|
p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir)
|
|
if a-delta <= float64(endAngle) {
|
|
break
|
|
}
|
|
a -= delta
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
sin0, cos0 := math.Sincos(float64(startAngle))
|
|
x0 := x + radius*float32(cos0)
|
|
y0 := y + radius*float32(sin0)
|
|
sin1, cos1 := math.Sincos(float64(endAngle))
|
|
x1 := x + radius*float32(cos1)
|
|
y1 := y + radius*float32(sin1)
|
|
|
|
p.LineTo(x0, y0)
|
|
|
|
// Calculate the control points for an approximated Bézier curve.
|
|
// See https://learn.microsoft.com/en-us/previous-versions/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
|
|
l := radius * float32(math.Tan(da/4)*4/3)
|
|
var cx0, cy0, cx1, cy1 float32
|
|
if dir == Clockwise {
|
|
cx0 = x0 + l*float32(-sin0)
|
|
cy0 = y0 + l*float32(cos0)
|
|
cx1 = x1 + l*float32(sin1)
|
|
cy1 = y1 + l*float32(-cos1)
|
|
} else {
|
|
cx0 = x0 + l*float32(sin0)
|
|
cy0 = y0 + l*float32(-cos0)
|
|
cx1 = x1 + l*float32(-sin1)
|
|
cy1 = y1 + l*float32(cos1)
|
|
}
|
|
p.CubicTo(cx0, cy0, cx1, cy1, x1, y1)
|
|
}
|
|
|
|
func (p *Path) closeFlatPath() {
|
|
if len(p.flatPaths) == 0 {
|
|
return
|
|
}
|
|
p.flatPaths[len(p.flatPaths)-1].close()
|
|
}
|
|
|
|
// AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them.
|
|
//
|
|
// AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function.
|
|
// If the arguments are nils, AppendVerticesAndIndicesForFilling returns new slices.
|
|
//
|
|
// The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
|
|
//
|
|
// The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with FileRuleNonZero or FillRuleEvenOdd
|
|
// in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
|
|
//
|
|
// The returned vertices and indices should be rendered with a solid (non-transparent) color with the default Blend (source-over).
|
|
// Otherwise, there is no guarantee about the rendering result.
|
|
//
|
|
// Deprecated: as of v2.9. Use [FillPath] instead.
|
|
func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) {
|
|
base := uint16(len(vertices))
|
|
for _, flatPath := range p.ensureFlatPaths() {
|
|
if flatPath.pointCount() < 3 {
|
|
continue
|
|
}
|
|
for i, pt := range flatPath.points {
|
|
vertices = append(vertices, ebiten.Vertex{
|
|
DstX: pt.x,
|
|
DstY: pt.y,
|
|
SrcX: 0,
|
|
SrcY: 0,
|
|
ColorR: 1,
|
|
ColorG: 1,
|
|
ColorB: 1,
|
|
ColorA: 1,
|
|
})
|
|
if i < 2 {
|
|
continue
|
|
}
|
|
indices = append(indices, base, base+uint16(i-1), base+uint16(i))
|
|
}
|
|
base += uint16(flatPath.pointCount())
|
|
}
|
|
return vertices, indices
|
|
}
|
|
|
|
// ApplyGeoM applies the given GeoM to the path and returns a new path.
|
|
//
|
|
// Deprecated: as of v2.9. Use [Path.AddPath] instead.
|
|
func (p *Path) ApplyGeoM(geoM ebiten.GeoM) *Path {
|
|
// Flat paths are not copied.
|
|
var np Path
|
|
op := &AddPathOptions{}
|
|
op.GeoM = geoM
|
|
np.AddPath(p, op)
|
|
return &np
|
|
}
|
|
|
|
// AddPathOptions is options for [Path.AddPath].
|
|
type AddPathOptions struct {
|
|
// GeoM is a geometry matrix to apply to the path.
|
|
//
|
|
// The default (zero) value is an identity matrix.
|
|
GeoM ebiten.GeoM
|
|
}
|
|
|
|
// AddPath adds the given path src to this path p as a sub-path.
|
|
func (p *Path) AddPath(src *Path, options *AddPathOptions) {
|
|
p.resetFlatPaths()
|
|
|
|
if options == nil {
|
|
options = &AddPathOptions{}
|
|
}
|
|
|
|
srcN := len(src.subPaths)
|
|
n := len(p.subPaths)
|
|
p.addSubPaths(srcN)
|
|
// p might be the same as src. Use srcN to avoid modifying the overlapped region.
|
|
for i, origSubPath := range src.subPaths[:srcN] {
|
|
sx, sy := options.GeoM.Apply(float64(origSubPath.start.x), float64(origSubPath.start.y))
|
|
if m := len(origSubPath.ops) - len(p.subPaths[n+i].ops); m > 0 {
|
|
p.subPaths[n+i].ops = slices.Grow(p.subPaths[n+i].ops, m)
|
|
}
|
|
p.subPaths[n+i].ops = p.subPaths[n+i].ops[:len(origSubPath.ops)]
|
|
p.subPaths[n+i].start = point{x: float32(sx), y: float32(sy)}
|
|
p.subPaths[n+i].closed = origSubPath.closed
|
|
|
|
for j, o := range origSubPath.ops {
|
|
switch o.typ {
|
|
case opTypeLineTo:
|
|
x1, y1 := options.GeoM.Apply(float64(o.p1.x), float64(o.p1.y))
|
|
p.subPaths[n+i].ops[j] = op{
|
|
typ: o.typ,
|
|
p1: point{x: float32(x1), y: float32(y1)},
|
|
}
|
|
case opTypeQuadTo:
|
|
x1, y1 := options.GeoM.Apply(float64(o.p1.x), float64(o.p1.y))
|
|
x2, y2 := options.GeoM.Apply(float64(o.p2.x), float64(o.p2.y))
|
|
p.subPaths[n+i].ops[j] = op{
|
|
typ: o.typ,
|
|
p1: point{x: float32(x1), y: float32(y1)},
|
|
p2: point{x: float32(x2), y: float32(y2)},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// normalize normalizes the path by removing unnecessary sub-paths and points.
|
|
func (p *Path) normalize() {
|
|
for i, subPath := range p.subPaths {
|
|
cur := subPath.start
|
|
var n int
|
|
for _, op := range subPath.ops {
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
if cur == op.p1 {
|
|
continue
|
|
}
|
|
cur = op.p1
|
|
case opTypeQuadTo:
|
|
switch {
|
|
case cur == op.p2:
|
|
continue
|
|
case cur == op.p1, op.p1 == op.p2:
|
|
op.typ = opTypeLineTo
|
|
op.p1 = op.p2
|
|
op.p2 = point{}
|
|
cur = op.p1
|
|
case (op.p1.x-cur.x)*(op.p2.y-cur.y)-(op.p2.x-cur.x)*(op.p1.y-cur.y) == 0:
|
|
op.typ = opTypeLineTo
|
|
op.p1 = op.p2
|
|
op.p2 = point{}
|
|
cur = op.p1
|
|
default:
|
|
cur = op.p2
|
|
}
|
|
}
|
|
p.subPaths[i].ops[n] = op
|
|
n++
|
|
}
|
|
p.subPaths[i].ops = slices.Delete(p.subPaths[i].ops, n, len(subPath.ops))
|
|
}
|
|
|
|
// Do not use slices.DeleteFunc as sub-paths's slices should be reused.
|
|
var n int
|
|
for i := range p.subPaths {
|
|
if len(p.subPaths[i].ops) == 0 {
|
|
p.subPaths[i].reset()
|
|
continue
|
|
}
|
|
p.subPaths[n] = p.subPaths[i]
|
|
n++
|
|
}
|
|
p.subPaths = p.subPaths[:n]
|
|
}
|
|
|
|
// AppendVerticesAndIndicesForStroke appends vertices and indices to render a stroke of this path and returns them.
|
|
// AppendVerticesAndIndicesForStroke works in a similar way to the built-in append function.
|
|
// If the arguments are nils, AppendVerticesAndIndicesForStroke returns new slices.
|
|
//
|
|
// The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
|
|
//
|
|
// The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with a solid (non-transparent) color
|
|
// with FillRuleFillAll or FillRuleNonZero, not FileRuleEvenOdd.
|
|
//
|
|
// Deprecated: as of v2.9. Use [StrokePath] or [Path.AddStroke] instead.
|
|
func (p *Path) AppendVerticesAndIndicesForStroke(vertices []ebiten.Vertex, indices []uint16, op *StrokeOptions) ([]ebiten.Vertex, []uint16) {
|
|
if op == nil {
|
|
return vertices, indices
|
|
}
|
|
|
|
var rects [][4]point
|
|
var tmpPath Path
|
|
for _, flatPath := range p.ensureFlatPaths() {
|
|
if flatPath.pointCount() < 2 {
|
|
continue
|
|
}
|
|
|
|
rects = rects[:0]
|
|
for i := 0; i < flatPath.pointCount()-1; i++ {
|
|
pt := flatPath.points[i]
|
|
|
|
nextPt := flatPath.points[i+1]
|
|
dx := nextPt.x - pt.x
|
|
dy := nextPt.y - pt.y
|
|
dist := float32(math.Sqrt(float64(dx*dx + dy*dy)))
|
|
extX := (dy) * op.Width / 2 / dist
|
|
extY := (-dx) * op.Width / 2 / dist
|
|
|
|
rects = append(rects, [4]point{
|
|
{
|
|
x: pt.x + extX,
|
|
y: pt.y + extY,
|
|
},
|
|
{
|
|
x: nextPt.x + extX,
|
|
y: nextPt.y + extY,
|
|
},
|
|
{
|
|
x: pt.x - extX,
|
|
y: pt.y - extY,
|
|
},
|
|
{
|
|
x: nextPt.x - extX,
|
|
y: nextPt.y - extY,
|
|
},
|
|
})
|
|
}
|
|
|
|
for i, rect := range rects {
|
|
idx := uint16(len(vertices))
|
|
for _, pt := range rect {
|
|
vertices = append(vertices, ebiten.Vertex{
|
|
DstX: pt.x,
|
|
DstY: pt.y,
|
|
SrcX: 0,
|
|
SrcY: 0,
|
|
ColorR: 1,
|
|
ColorG: 1,
|
|
ColorB: 1,
|
|
ColorA: 1,
|
|
})
|
|
}
|
|
// All the triangles are rendered in clockwise order to enable FillRuleNonZero (#2833).
|
|
indices = append(indices, idx, idx+1, idx+2, idx+1, idx+3, idx+2)
|
|
|
|
// Add line joints.
|
|
var nextRect [4]point
|
|
if i < len(rects)-1 {
|
|
nextRect = rects[i+1]
|
|
} else if flatPath.closed {
|
|
nextRect = rects[0]
|
|
} else {
|
|
continue
|
|
}
|
|
|
|
// c is the center of the 'end' edge of the current rect (= the second point of the segment).
|
|
c := point{
|
|
x: (rect[1].x + rect[3].x) / 2,
|
|
y: (rect[1].y + rect[3].y) / 2,
|
|
}
|
|
|
|
// Note that the Y direction and the angle direction are opposite from math's.
|
|
a0 := float32(math.Atan2(float64(rect[1].y-c.y), float64(rect[1].x-c.x)))
|
|
a1 := float32(math.Atan2(float64(nextRect[0].y-c.y), float64(nextRect[0].x-c.x)))
|
|
da := a1 - a0
|
|
for da < 0 {
|
|
da += 2 * math.Pi
|
|
}
|
|
if da == 0 {
|
|
continue
|
|
}
|
|
|
|
switch op.LineJoin {
|
|
case LineJoinMiter:
|
|
delta := math.Pi - da
|
|
exceed := float32(math.Abs(1/math.Sin(float64(delta/2)))) > op.MiterLimit
|
|
|
|
// Quadrilateral
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.LineTo(rect[1].x, rect[1].y)
|
|
if !exceed {
|
|
pt := crossingPointForTwoLines(rect[0], rect[1], nextRect[0], nextRect[1])
|
|
tmpPath.LineTo(pt.x, pt.y)
|
|
}
|
|
tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
|
|
} else {
|
|
tmpPath.LineTo(rect[3].x, rect[3].y)
|
|
if !exceed {
|
|
pt := crossingPointForTwoLines(rect[2], rect[3], nextRect[2], nextRect[3])
|
|
tmpPath.LineTo(pt.x, pt.y)
|
|
}
|
|
tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
|
|
case LineJoinBevel:
|
|
// Triangle
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.LineTo(rect[1].x, rect[1].y)
|
|
tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
|
|
} else {
|
|
tmpPath.LineTo(rect[3].x, rect[3].y)
|
|
tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
|
|
case LineJoinRound:
|
|
// Arc
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(c.x, c.y)
|
|
if da < math.Pi {
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a0, a1, Clockwise)
|
|
} else {
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a0+math.Pi, a1+math.Pi, CounterClockwise)
|
|
}
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
}
|
|
|
|
if len(rects) == 0 {
|
|
continue
|
|
}
|
|
|
|
// If the flat path is closed, do not render line caps.
|
|
if flatPath.closed {
|
|
continue
|
|
}
|
|
|
|
switch op.LineCap {
|
|
case LineCapButt:
|
|
// Do nothing.
|
|
|
|
case LineCapRound:
|
|
startR, endR := rects[0], rects[len(rects)-1]
|
|
{
|
|
c := point{
|
|
x: (startR[0].x + startR[2].x) / 2,
|
|
y: (startR[0].y + startR[2].y) / 2,
|
|
}
|
|
a := float32(math.Atan2(float64(startR[0].y-startR[2].y), float64(startR[0].x-startR[2].x)))
|
|
// Arc
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(startR[0].x, startR[0].y)
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, CounterClockwise)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
{
|
|
c := point{
|
|
x: (endR[1].x + endR[3].x) / 2,
|
|
y: (endR[1].y + endR[3].y) / 2,
|
|
}
|
|
a := float32(math.Atan2(float64(endR[1].y-endR[3].y), float64(endR[1].x-endR[3].x)))
|
|
// Arc
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(endR[1].x, endR[1].y)
|
|
tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, Clockwise)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
|
|
case LineCapSquare:
|
|
startR, endR := rects[0], rects[len(rects)-1]
|
|
{
|
|
a := math.Atan2(float64(startR[0].y-startR[1].y), float64(startR[0].x-startR[1].x))
|
|
s, c := math.Sincos(a)
|
|
dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
|
|
|
|
// Quadrilateral
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(startR[0].x, startR[0].y)
|
|
tmpPath.LineTo(startR[0].x+dx, startR[0].y+dy)
|
|
tmpPath.LineTo(startR[2].x+dx, startR[2].y+dy)
|
|
tmpPath.LineTo(startR[2].x, startR[2].y)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
{
|
|
a := math.Atan2(float64(endR[1].y-endR[0].y), float64(endR[1].x-endR[0].x))
|
|
s, c := math.Sincos(a)
|
|
dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
|
|
|
|
// Quadrilateral
|
|
tmpPath.Reset()
|
|
tmpPath.MoveTo(endR[1].x, endR[1].y)
|
|
tmpPath.LineTo(endR[1].x+dx, endR[1].y+dy)
|
|
tmpPath.LineTo(endR[3].x+dx, endR[3].y+dy)
|
|
tmpPath.LineTo(endR[3].x, endR[3].y)
|
|
vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
|
|
}
|
|
}
|
|
}
|
|
|
|
return vertices, indices
|
|
}
|
|
|
|
func floor(x float32) int {
|
|
return int(math.Floor(float64(x)))
|
|
}
|
|
|
|
func ceil(x float32) int {
|
|
return int(math.Ceil(float64(x)))
|
|
}
|
|
|
|
// Bounds returns the minimum bounding rectangle of the path.
|
|
func (p *Path) Bounds() image.Rectangle {
|
|
// Note that (image.Rectangle).Union doesn't work well with empty rectangles.
|
|
totalMinX := math.MaxInt
|
|
totalMinY := math.MaxInt
|
|
totalMaxX := math.MinInt
|
|
totalMaxY := math.MinInt
|
|
|
|
for i := range p.subPaths {
|
|
subPath := &p.subPaths[i]
|
|
if !subPath.isValid() {
|
|
continue
|
|
}
|
|
|
|
minX := math.MaxInt
|
|
minY := math.MaxInt
|
|
maxX := math.MinInt
|
|
maxY := math.MinInt
|
|
cur := subPath.start
|
|
for _, op := range subPath.ops {
|
|
switch op.typ {
|
|
case opTypeLineTo:
|
|
minX = min(minX, floor(cur.x), floor(op.p1.x))
|
|
minY = min(minY, floor(cur.y), floor(op.p1.y))
|
|
maxX = max(maxX, ceil(cur.x), ceil(op.p1.x))
|
|
maxY = max(maxY, ceil(cur.y), ceil(op.p1.y))
|
|
cur = op.p1
|
|
case opTypeQuadTo:
|
|
// The candidates are the two control points on the edges (cur and op.p2), and an extremum point.
|
|
// B(t) = (1-t)*(1-t)*p0 + 2*(1-t)*t*p1 + t*t*p2
|
|
// B'(t) = 2*(1-t)*(p1-p0) + 2*t*(p2-p1)
|
|
// B'(t) = 0 <=> t = (p0-p1) / (p0-2*p1+p2)
|
|
// Avoid an extreme denominator for precision.
|
|
if denom := cur.x - 2*op.p1.x + op.p2.x; abs(denom) >= 1.0/16.0 {
|
|
if t := (cur.x - op.p1.x) / denom; t > 0 && t < 1 {
|
|
ex := (1-t)*(1-t)*cur.x + 2*t*(1-t)*op.p1.x + t*t*op.p2.x
|
|
minX = min(minX, floor(cur.x), floor(ex), floor(op.p2.x))
|
|
maxX = max(maxX, ceil(cur.x), ceil(ex), ceil(op.p2.x))
|
|
} else {
|
|
minX = min(minX, floor(cur.x), floor(op.p2.x))
|
|
maxX = max(maxX, ceil(cur.x), ceil(op.p2.x))
|
|
}
|
|
} else {
|
|
// The curve is almost linear. Include all the points for safety.
|
|
minX = min(minX, floor(cur.x), floor(op.p1.x), floor(op.p2.x))
|
|
maxX = max(maxX, ceil(cur.x), ceil(op.p1.x), ceil(op.p2.x))
|
|
}
|
|
if denom := cur.y - 2*op.p1.y + op.p2.y; abs(denom) >= 1.0/16.0 {
|
|
if t := (cur.y - op.p1.y) / denom; t > 0 && t < 1 {
|
|
ex := (1-t)*(1-t)*cur.y + 2*t*(1-t)*op.p1.y + t*t*op.p2.y
|
|
minY = min(minY, floor(cur.y), floor(ex), floor(op.p2.y))
|
|
maxY = max(maxY, ceil(cur.y), ceil(ex), ceil(op.p2.y))
|
|
} else {
|
|
minY = min(minY, floor(cur.y), floor(op.p2.y))
|
|
maxY = max(maxY, ceil(cur.y), ceil(op.p2.y))
|
|
}
|
|
} else {
|
|
minY = min(minY, floor(cur.y), floor(op.p1.y), floor(op.p2.y))
|
|
maxY = max(maxY, ceil(cur.y), ceil(op.p1.y), ceil(op.p2.y))
|
|
}
|
|
cur = op.p2
|
|
}
|
|
}
|
|
totalMinX = min(totalMinX, minX)
|
|
totalMinY = min(totalMinY, minY)
|
|
totalMaxX = max(totalMaxX, maxX)
|
|
totalMaxY = max(totalMaxY, maxY)
|
|
}
|
|
if totalMinX >= totalMaxX || totalMinY >= totalMaxY {
|
|
return image.Rectangle{}
|
|
}
|
|
return image.Rect(totalMinX, totalMinY, totalMaxX, totalMaxY)
|
|
}
|