// Copyright 2019 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package vector provides functions for vector graphics rendering. // // This package is under experiments and the API might be changed with breaking backward compatibility. package vector import ( "image" "math" "slices" "github.com/hajimehoshi/ebiten/v2" ) // Direction represents clockwise or counterclockwise. type Direction int const ( Clockwise Direction = iota CounterClockwise ) type opType int const ( opTypeLineTo opType = iota opTypeQuadTo ) type op struct { typ opType p1 point p2 point } func abs(x float32) float32 { if x < 0 { return -x } return x } const epsilon = 1e-6 type point struct { x float32 y float32 } func (p point) add(v vec2) point { return point{x: p.x + v.x, y: p.y + v.y} } type vec2 struct { x, y float32 } func (v vec2) perp() vec2 { return vec2{x: -v.y, y: v.x} } func (v vec2) inv() vec2 { return vec2{x: -v.x, y: -v.y} } func (v vec2) len() float32 { return float32(math.Hypot(float64(v.x), float64(v.y))) } func (v vec2) norm() vec2 { len := v.len() if len == 0 { return vec2{float32(math.NaN()), float32(math.NaN())} } return vec2{v.x / len, v.y / len} } func (v vec2) mul(s float32) vec2 { return vec2{x: s * v.x, y: s * v.y} } type subPath struct { ops []op start point closed bool cachedValid bool isCachedValidValid bool } func (s *subPath) reset() { s.ops = s.ops[:0] s.start = point{} s.closed = false s.cachedValid = false s.isCachedValidValid = false } func isRegularF32(x float32) bool { return !math.IsNaN(float64(x)) && !math.IsInf(float64(x), 0) } func (s *subPath) isValid() bool { if s.isCachedValidValid { return s.cachedValid } if !isRegularF32(s.start.x) || !isRegularF32(s.start.y) { s.cachedValid = false s.isCachedValidValid = true return false } for _, op := range s.ops { switch op.typ { case opTypeLineTo: if !isRegularF32(op.p1.x) || !isRegularF32(op.p1.y) { s.cachedValid = false s.isCachedValidValid = true return false } case opTypeQuadTo: if !isRegularF32(op.p1.x) || !isRegularF32(op.p1.y) || !isRegularF32(op.p2.x) || !isRegularF32(op.p2.y) { s.cachedValid = false s.isCachedValidValid = true return false } } } s.cachedValid = true s.isCachedValidValid = true return true } func (s *subPath) startAtOp(index int) point { if index == 0 { return s.start } return s.endAtOp(index - 1) } func (s *subPath) endAtOp(index int) point { op := s.ops[index] switch op.typ { case opTypeLineTo: return op.p1 case opTypeQuadTo: return op.p2 } panic("not reached") } func (s *subPath) startDir(index int) vec2 { p := s.startAtOp(index) op := s.ops[index] return vec2{x: op.p1.x - p.x, y: op.p1.y - p.y} } func (s *subPath) endDir(index int) vec2 { switch op := s.ops[index]; op.typ { case opTypeLineTo: return s.startDir(index) case opTypeQuadTo: return vec2{x: op.p2.x - op.p1.x, y: op.p2.y - op.p1.y} } panic("not reached") } // flatPath is a flattened sub-path of a path. // A flatPath consists of points for line segments. type flatPath struct { points []point closed bool } // reset resets the flatPath. // reset doesn't release the allocated memory so that the memory can be reused. func (f *flatPath) reset() { f.points = f.points[:0] f.closed = false } func (f flatPath) pointCount() int { return len(f.points) } func (f flatPath) lastPoint() point { return f.points[len(f.points)-1] } func (f *flatPath) appendPoint(pt point) { if f.closed { panic("vector: a closed flatPath cannot append a new point") } if len(f.points) > 0 { // Do not add a too close point to the last point. // This can cause unexpected rendering results. if lp := f.lastPoint(); abs(lp.x-pt.x) < 1e-2 && abs(lp.y-pt.y) < 1e-2 { return } } f.points = append(f.points, pt) } func (f *flatPath) close() { f.closed = true } // Path represents a collection of vector graphics operations. type Path struct { subPaths []subPath // flatPaths is a cached actual rendering positions. // flatPaths is used only for deprecated functions. Do not use this for new functions. flatPaths []flatPath } // Reset resets the path. // Reset doesn't release the allocated memory so that the memory can be reused. func (p *Path) Reset() { p.resetSubPaths() p.resetFlatPaths() } func (p *Path) resetSubPaths() { for i := range p.subPaths { p.subPaths[i].reset() } p.subPaths = p.subPaths[:0] } func (p *Path) resetFlatPaths() { for _, fp := range p.flatPaths { fp.reset() } p.flatPaths = p.flatPaths[:0] } func (p *Path) resetLastSubPathCacheStates() { if len(p.subPaths) == 0 { return } s := &p.subPaths[len(p.subPaths)-1] s.cachedValid = false s.isCachedValidValid = false } func (p *Path) appendNewFlatPath(pt point) { if cap(p.flatPaths) > len(p.flatPaths) { // Reuse the last flat path since the last flat path might have an already allocated slice. p.flatPaths = p.flatPaths[:len(p.flatPaths)+1] p.flatPaths[len(p.flatPaths)-1].reset() p.flatPaths[len(p.flatPaths)-1].appendPoint(pt) return } p.flatPaths = append(p.flatPaths, flatPath{ points: []point{pt}, }) } func (p *Path) ensureFlatPaths() []flatPath { if len(p.flatPaths) > 0 || len(p.subPaths) == 0 { return p.flatPaths } for _, subPath := range p.subPaths { p.appendNewFlatPath(subPath.start) cur := subPath.start for _, op := range subPath.ops { switch op.typ { case opTypeLineTo: p.appendFlatPathPointsForLine(op.p1) cur = op.p1 case opTypeQuadTo: p.appendFlatPathPointsForQuad(cur, op.p1, op.p2, 0) cur = op.p2 } } if subPath.closed { p.closeFlatPath() } } return p.flatPaths } func (p *Path) addSubPaths(n int) { // Use slices.Grow instead of append to reuse the underlying sub path object. p.subPaths = slices.Grow(p.subPaths, n)[:len(p.subPaths)+n] } // MoveTo starts a new sub-path with the given position (x, y) without adding a sub-path, func (p *Path) MoveTo(x, y float32) { p.resetFlatPaths() // Always update the start position. if len(p.subPaths) == 0 || len(p.subPaths[len(p.subPaths)-1].ops) > 0 { p.addSubPaths(1) } p.resetLastSubPathCacheStates() p.subPaths[len(p.subPaths)-1].start = point{x: x, y: y} p.subPaths[len(p.subPaths)-1].closed = false } // LineTo adds a line segment to the path, which starts from the last position of the current sub-path // and ends to the given position (x, y). // If p doesn't have any sub-paths or the last sub-path is closed, LineTo sets (x, y) as the start position of a new sub-path. func (p *Path) LineTo(x, y float32) { p.resetFlatPaths() if len(p.subPaths) == 0 { p.addSubPaths(1) p.subPaths[len(p.subPaths)-1].start = point{x: x, y: y} } else if p.subPaths[len(p.subPaths)-1].closed { p.addSubPaths(1) p.subPaths[len(p.subPaths)-1].start = p.subPaths[len(p.subPaths)-2].start } p.resetLastSubPathCacheStates() if cur, ok := p.currentPosition(); ok { if cur.x == x && cur.y == y { return } } p.subPaths[len(p.subPaths)-1].ops = append(p.subPaths[len(p.subPaths)-1].ops, op{ typ: opTypeLineTo, p1: point{x: x, y: y}, }) } // QuadTo adds a quadratic Bézier curve to the path. // (x1, y1) is the control point, and (x2, y2) is the destination. func (p *Path) QuadTo(x1, y1, x2, y2 float32) { p.resetFlatPaths() if len(p.subPaths) == 0 { p.addSubPaths(1) p.subPaths[len(p.subPaths)-1].start = point{x: x1, y: y1} } else if p.subPaths[len(p.subPaths)-1].closed { p.addSubPaths(1) p.subPaths[len(p.subPaths)-1].start = p.subPaths[len(p.subPaths)-2].start } p.resetLastSubPathCacheStates() if cur, ok := p.currentPosition(); ok { if cur.x == x2 && cur.y == y2 { return } } p.subPaths[len(p.subPaths)-1].ops = append(p.subPaths[len(p.subPaths)-1].ops, op{ typ: opTypeQuadTo, p1: point{x: x1, y: y1}, p2: point{x: x2, y: y2}, }) } // CubicTo adds a cubic Bézier curve to the path. // (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination. func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) { cur, ok := p.currentPosition() if !ok { cur = point{x: x1, y: y1} } minX := min(cur.x, x1, x2, x3) maxX := max(cur.x, x1, x2, x3) minY := min(cur.y, y1, y2, y3) maxY := max(cur.y, y1, y2, y3) allowance := max(maxX-minX, maxY-minY) / 1024 p.cubicTo(x1, y1, x2, y2, x3, y3, 0, allowance) } func (p *Path) cubicTo(x1, y1, x2, y2, x3, y3 float32, level int, allowance float32) { cur, ok := p.currentPosition() if !ok { cur = point{x: x1, y: y1} } // Approximate a cubic Bézier curve to a quadratic Bézier curve. // Assume that P0, P1, P2, and P3 are the control points of the cubic Bézier curve C. // mid is the middle control point of the quadratic Bézier curve Q. // mid equals to 2 * Q(0.5) - (1/2)*(P0 + P3). // If Q(0.5) = C(0.5) = (1/8)*(P0 + 3*P1 + 3*P2 + P3), mid will be (1/4)*(-P0 + 3*P1 + 3*P2 + -P3). p0 := cur p1 := point{x: x1, y: y1} p2 := point{x: x2, y: y2} p3 := point{x: x3, y: y3} m := point{ x: -0.25*p0.x + 0.75*p1.x + 0.75*p2.x - 0.25*p3.x, y: -0.25*p0.y + 0.75*p1.y + 0.75*p2.y - 0.25*p3.y, } if level > 5 || isQuadraticCloseEnoughToCubic(p0, p3, m, p1, p2, allowance) { p.QuadTo(m.x, m.y, p3.x, p3.y) return } // If any of the points is not a regular float32, do not call this function recursively. if !isRegularF32(cur.x) || !isRegularF32(cur.y) || !isRegularF32(x1) || !isRegularF32(y1) || !isRegularF32(x2) || !isRegularF32(y2) || !isRegularF32(x3) || !isRegularF32(y3) { p.QuadTo(m.x, m.y, p3.x, p3.y) return } // Split the cubic Bézier curve into two by De Casteljau's algorithm. p01 := point{ x: (p0.x + p1.x) / 2, y: (p0.y + p1.y) / 2, } p12 := point{ x: (p1.x + p2.x) / 2, y: (p1.y + p2.y) / 2, } p23 := point{ x: (p2.x + p3.x) / 2, y: (p2.y + p3.y) / 2, } p012 := point{ x: (p01.x + p12.x) / 2, y: (p01.y + p12.y) / 2, } p123 := point{ x: (p12.x + p23.x) / 2, y: (p12.y + p23.y) / 2, } p0123 := point{ x: (p012.x + p123.x) / 2, y: (p012.y + p123.y) / 2, } p.cubicTo(p01.x, p01.y, p012.x, p012.y, p0123.x, p0123.y, level+1, allowance) p.cubicTo(p123.x, p123.y, p23.x, p23.y, p3.x, p3.y, level+1, allowance) } func isQuadraticCloseEnoughToCubic(start, end, qc1, cc1, cc2 point, allowance float32) bool { for _, t := range []float32{0.25, 0.75} { q := point{ x: (1-t)*(1-t)*start.x + 2*(1-t)*t*qc1.x + t*t*end.x, y: (1-t)*(1-t)*start.y + 2*(1-t)*t*qc1.y + t*t*end.y, } c := point{ x: (1-t)*(1-t)*(1-t)*start.x + 3*(1-t)*(1-t)*t*cc1.x + 3*(1-t)*t*t*cc2.x + t*t*t*end.x, y: (1-t)*(1-t)*(1-t)*start.y + 3*(1-t)*(1-t)*t*cc1.y + 3*(1-t)*t*t*cc2.y + t*t*t*end.y, } if !arePointsInRange(q, c, 0, allowance) { return false } } return true } func arePointsInRange(p0, p1 point, allowanceMin, allowanceMax float32) bool { d := (p0.x-p1.x)*(p0.x-p1.x) + (p0.y-p1.y)*(p0.y-p1.y) return d >= allowanceMin*allowanceMin && d <= allowanceMax*allowanceMax } // Close adds a new line from the last position of the current sub-path to the first position of the current sub-path, // and marks the current sub-path closed. // Following operations for this path will start with a new sub-path. func (p *Path) Close() { p.resetFlatPaths() if len(p.subPaths) == 0 { return } if len(p.subPaths[len(p.subPaths)-1].ops) > 0 { subPath := &p.subPaths[len(p.subPaths)-1] start := subPath.start p.LineTo(start.x, start.y) } p.subPaths[len(p.subPaths)-1].closed = true } func (p *Path) appendFlatPathPointsForLine(pt point) { if len(p.flatPaths) == 0 || p.flatPaths[len(p.flatPaths)-1].closed { p.appendNewFlatPath(pt) return } p.flatPaths[len(p.flatPaths)-1].appendPoint(pt) } // lineForTwoPoints returns parameters for a line passing through p0 and p1. func lineForTwoPoints(p0, p1 point) (a, b, c float32) { // Line passing through p0 and p1 in the form of ax + by + c = 0 a = p1.y - p0.y b = -(p1.x - p0.x) c = (p1.x-p0.x)*p0.y - (p1.y-p0.y)*p0.x return } // isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow. // If p0 and p1 are the same, isPointCloseToSegment returns true when the distance between p0 and p is less than allow. func isPointCloseToSegment(p, p0, p1 point, allow float32) bool { if p0 == p1 { return allow*allow >= (p0.x-p.x)*(p0.x-p.x)+(p0.y-p.y)*(p0.y-p.y) } a, b, c := lineForTwoPoints(p0, p1) // The distance between a line ax+by+c=0 and (x0, y0) is // |ax0 + by0 + c| / √(a² + b²) return allow*allow*(a*a+b*b) >= (a*p.x+b*p.y+c)*(a*p.x+b*p.y+c) } // crossingPointForTwoLines returns a crossing point for two lines. func crossingPointForTwoLines(p00, p01, p10, p11 point) point { a0, b0, c0 := lineForTwoPoints(p00, p01) a1, b1, c1 := lineForTwoPoints(p10, p11) det := a0*b1 - a1*b0 // If det is close to 0, the two lines are almost parallel. if abs(det) < epsilon { return point{ x: float32(math.NaN()), y: float32(math.NaN()), } } return point{ x: (b0*c1 - b1*c0) / det, y: (a1*c0 - a0*c1) / det, } } func (p *Path) appendFlatPathPointsForQuad(p0, p1, p2 point, level int) { if level > 10 { return } if isPointCloseToSegment(p1, p0, p2, 0.5) { p.appendFlatPathPointsForLine(p2) return } p01 := point{ x: (p0.x + p1.x) / 2, y: (p0.y + p1.y) / 2, } p12 := point{ x: (p1.x + p2.x) / 2, y: (p1.y + p2.y) / 2, } p012 := point{ x: (p01.x + p12.x) / 2, y: (p01.y + p12.y) / 2, } p.appendFlatPathPointsForQuad(p0, p01, p012, level+1) p.appendFlatPathPointsForQuad(p012, p12, p2, level+1) } func (p *Path) currentPosition() (point, bool) { if len(p.subPaths) == 0 { return point{}, false } ops := p.subPaths[len(p.subPaths)-1].ops if len(ops) == 0 { return p.subPaths[len(p.subPaths)-1].start, true } op := ops[len(ops)-1] switch op.typ { case opTypeLineTo: return op.p1, true case opTypeQuadTo: return op.p2, true } return point{}, false } // ArcTo adds an arc curve to the path. // (x1, y1) is the first control point, and (x2, y2) is the second control point. func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) { p0, ok := p.currentPosition() if !ok { p0 = point{x: x1, y: y1} } // If the start and end points are too close, just add a line segment to avoid strange rendering results. if arePointsInRange(p0, point{x: x2, y: y2}, 0, radius) { p.LineTo(x2, y2) return } d0 := vec2{ x: p0.x - x1, y: p0.y - y1, } d1 := vec2{ x: x2 - x1, y: y2 - y1, } if d0 == (vec2{}) || d1 == (vec2{}) { p.LineTo(x1, y1) return } d0 = d0.norm() d1 = d1.norm() // theta is the angle between two vectors d0 and d1. theta := math.Acos(float64(d0.x*d1.x + d0.y*d1.y)) // TODO: When theta is bigger than π/2, the arc should be split into two. if theta == 0 { p.LineTo(x2, y2) return } // dist is the distance between the control point and the arc's beginning and ending points. dist := radius / float32(math.Tan(theta/2)) // TODO: What if dist is too big? // (ax0, ay0) is the start of the arc. ax0 := x1 + d0.x*dist ay0 := y1 + d0.y*dist var cx, cy, a0, a1 float32 var dir Direction // A cross product can be calculated by d0.x*d1.y - d0.y*d1.x, // but this can cause a floating-point precision issue due to FMSUBS. // Avoid this subtraction. // // a*b - c*d can be translated into // (1) x := c*d // (2) y := a*b-x // One rounding happens at (1). The number of rounding is not determined at (2). // If FMSUBS is used for (2), only one rounding happens at (2) for the multiplying and the subtraction. // Thus, even if a*b == c*d, y can be non-zero. if d0.x*d1.y >= d0.y*d1.x { cx = ax0 - d0.y*radius cy = ay0 + d0.x*radius a0 = float32(math.Atan2(float64(-d0.x), float64(d0.y))) a1 = float32(math.Atan2(float64(d1.x), float64(-d1.y))) dir = CounterClockwise } else { cx = ax0 + d0.y*radius cy = ay0 - d0.x*radius a0 = float32(math.Atan2(float64(d0.x), float64(-d0.y))) a1 = float32(math.Atan2(float64(-d1.x), float64(d1.y))) dir = Clockwise } p.Arc(cx, cy, radius, a0, a1, dir) } func euclideanMod(a, b float32) float32 { return a - b*float32(math.Floor(float64(a)/float64(b))) } // Arc adds an arc to the path. // (x, y) is the center of the arc. func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) { origStartAngle := startAngle origEndAngle := endAngle // Adjust the angles. var da float64 if dir == Clockwise { endAngle = startAngle + float32(euclideanMod(endAngle-startAngle, 2*math.Pi)) da = float64(endAngle - startAngle) } else { startAngle = endAngle + float32(euclideanMod(startAngle-endAngle, 2*math.Pi)) da = float64(startAngle - endAngle) } if da == 0 && origStartAngle != origEndAngle { da = 2 * math.Pi if dir == Clockwise { endAngle = startAngle + 2*math.Pi } else { startAngle = endAngle + 2*math.Pi } } // If the angle is big, splict this into multiple Arc calls. if da > math.Pi/2 { const delta = math.Pi / 3 a := float64(startAngle) if dir == Clockwise { for { p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir) if a+delta >= float64(endAngle) { break } a += delta } } else { for { p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir) if a-delta <= float64(endAngle) { break } a -= delta } } return } sin0, cos0 := math.Sincos(float64(startAngle)) x0 := x + radius*float32(cos0) y0 := y + radius*float32(sin0) sin1, cos1 := math.Sincos(float64(endAngle)) x1 := x + radius*float32(cos1) y1 := y + radius*float32(sin1) p.LineTo(x0, y0) // Calculate the control points for an approximated Bézier curve. // See https://learn.microsoft.com/en-us/previous-versions/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers. l := radius * float32(math.Tan(da/4)*4/3) var cx0, cy0, cx1, cy1 float32 if dir == Clockwise { cx0 = x0 + l*float32(-sin0) cy0 = y0 + l*float32(cos0) cx1 = x1 + l*float32(sin1) cy1 = y1 + l*float32(-cos1) } else { cx0 = x0 + l*float32(sin0) cy0 = y0 + l*float32(-cos0) cx1 = x1 + l*float32(-sin1) cy1 = y1 + l*float32(cos1) } p.CubicTo(cx0, cy0, cx1, cy1, x1, y1) } func (p *Path) closeFlatPath() { if len(p.flatPaths) == 0 { return } p.flatPaths[len(p.flatPaths)-1].close() } // AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them. // // AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndicesForFilling returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with FileRuleNonZero or FillRuleEvenOdd // in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon. // // The returned vertices and indices should be rendered with a solid (non-transparent) color with the default Blend (source-over). // Otherwise, there is no guarantee about the rendering result. // // Deprecated: as of v2.9. Use [FillPath] instead. func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) { base := uint16(len(vertices)) for _, flatPath := range p.ensureFlatPaths() { if flatPath.pointCount() < 3 { continue } for i, pt := range flatPath.points { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) if i < 2 { continue } indices = append(indices, base, base+uint16(i-1), base+uint16(i)) } base += uint16(flatPath.pointCount()) } return vertices, indices } // ApplyGeoM applies the given GeoM to the path and returns a new path. // // Deprecated: as of v2.9. Use [Path.AddPath] instead. func (p *Path) ApplyGeoM(geoM ebiten.GeoM) *Path { // Flat paths are not copied. var np Path op := &AddPathOptions{} op.GeoM = geoM np.AddPath(p, op) return &np } // AddPathOptions is options for [Path.AddPath]. type AddPathOptions struct { // GeoM is a geometry matrix to apply to the path. // // The default (zero) value is an identity matrix. GeoM ebiten.GeoM } // AddPath adds the given path src to this path p as a sub-path. func (p *Path) AddPath(src *Path, options *AddPathOptions) { p.resetFlatPaths() if options == nil { options = &AddPathOptions{} } srcN := len(src.subPaths) n := len(p.subPaths) p.addSubPaths(srcN) // p might be the same as src. Use srcN to avoid modifying the overlapped region. for i, origSubPath := range src.subPaths[:srcN] { sx, sy := options.GeoM.Apply(float64(origSubPath.start.x), float64(origSubPath.start.y)) if m := len(origSubPath.ops) - len(p.subPaths[n+i].ops); m > 0 { p.subPaths[n+i].ops = slices.Grow(p.subPaths[n+i].ops, m) } p.subPaths[n+i].ops = p.subPaths[n+i].ops[:len(origSubPath.ops)] p.subPaths[n+i].start = point{x: float32(sx), y: float32(sy)} p.subPaths[n+i].closed = origSubPath.closed for j, o := range origSubPath.ops { switch o.typ { case opTypeLineTo: x1, y1 := options.GeoM.Apply(float64(o.p1.x), float64(o.p1.y)) p.subPaths[n+i].ops[j] = op{ typ: o.typ, p1: point{x: float32(x1), y: float32(y1)}, } case opTypeQuadTo: x1, y1 := options.GeoM.Apply(float64(o.p1.x), float64(o.p1.y)) x2, y2 := options.GeoM.Apply(float64(o.p2.x), float64(o.p2.y)) p.subPaths[n+i].ops[j] = op{ typ: o.typ, p1: point{x: float32(x1), y: float32(y1)}, p2: point{x: float32(x2), y: float32(y2)}, } } } } } // normalize normalizes the path by removing unnecessary sub-paths and points. func (p *Path) normalize() { for i, subPath := range p.subPaths { cur := subPath.start var n int for _, op := range subPath.ops { switch op.typ { case opTypeLineTo: if cur == op.p1 { continue } cur = op.p1 case opTypeQuadTo: switch { case cur == op.p2: continue case cur == op.p1, op.p1 == op.p2: op.typ = opTypeLineTo op.p1 = op.p2 op.p2 = point{} cur = op.p1 case (op.p1.x-cur.x)*(op.p2.y-cur.y)-(op.p2.x-cur.x)*(op.p1.y-cur.y) == 0: op.typ = opTypeLineTo op.p1 = op.p2 op.p2 = point{} cur = op.p1 default: cur = op.p2 } } p.subPaths[i].ops[n] = op n++ } p.subPaths[i].ops = slices.Delete(p.subPaths[i].ops, n, len(subPath.ops)) } // Do not use slices.DeleteFunc as sub-paths's slices should be reused. var n int for i := range p.subPaths { if len(p.subPaths[i].ops) == 0 { p.subPaths[i].reset() continue } p.subPaths[n] = p.subPaths[i] n++ } p.subPaths = p.subPaths[:n] } // AppendVerticesAndIndicesForStroke appends vertices and indices to render a stroke of this path and returns them. // AppendVerticesAndIndicesForStroke works in a similar way to the built-in append function. // If the arguments are nils, AppendVerticesAndIndicesForStroke returns new slices. // // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1. // // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with a solid (non-transparent) color // with FillRuleFillAll or FillRuleNonZero, not FileRuleEvenOdd. // // Deprecated: as of v2.9. Use [StrokePath] or [Path.AddStroke] instead. func (p *Path) AppendVerticesAndIndicesForStroke(vertices []ebiten.Vertex, indices []uint16, op *StrokeOptions) ([]ebiten.Vertex, []uint16) { if op == nil { return vertices, indices } var rects [][4]point var tmpPath Path for _, flatPath := range p.ensureFlatPaths() { if flatPath.pointCount() < 2 { continue } rects = rects[:0] for i := 0; i < flatPath.pointCount()-1; i++ { pt := flatPath.points[i] nextPt := flatPath.points[i+1] dx := nextPt.x - pt.x dy := nextPt.y - pt.y dist := float32(math.Sqrt(float64(dx*dx + dy*dy))) extX := (dy) * op.Width / 2 / dist extY := (-dx) * op.Width / 2 / dist rects = append(rects, [4]point{ { x: pt.x + extX, y: pt.y + extY, }, { x: nextPt.x + extX, y: nextPt.y + extY, }, { x: pt.x - extX, y: pt.y - extY, }, { x: nextPt.x - extX, y: nextPt.y - extY, }, }) } for i, rect := range rects { idx := uint16(len(vertices)) for _, pt := range rect { vertices = append(vertices, ebiten.Vertex{ DstX: pt.x, DstY: pt.y, SrcX: 0, SrcY: 0, ColorR: 1, ColorG: 1, ColorB: 1, ColorA: 1, }) } // All the triangles are rendered in clockwise order to enable FillRuleNonZero (#2833). indices = append(indices, idx, idx+1, idx+2, idx+1, idx+3, idx+2) // Add line joints. var nextRect [4]point if i < len(rects)-1 { nextRect = rects[i+1] } else if flatPath.closed { nextRect = rects[0] } else { continue } // c is the center of the 'end' edge of the current rect (= the second point of the segment). c := point{ x: (rect[1].x + rect[3].x) / 2, y: (rect[1].y + rect[3].y) / 2, } // Note that the Y direction and the angle direction are opposite from math's. a0 := float32(math.Atan2(float64(rect[1].y-c.y), float64(rect[1].x-c.x))) a1 := float32(math.Atan2(float64(nextRect[0].y-c.y), float64(nextRect[0].x-c.x))) da := a1 - a0 for da < 0 { da += 2 * math.Pi } if da == 0 { continue } switch op.LineJoin { case LineJoinMiter: delta := math.Pi - da exceed := float32(math.Abs(1/math.Sin(float64(delta/2)))) > op.MiterLimit // Quadrilateral tmpPath.Reset() tmpPath.MoveTo(c.x, c.y) if da < math.Pi { tmpPath.LineTo(rect[1].x, rect[1].y) if !exceed { pt := crossingPointForTwoLines(rect[0], rect[1], nextRect[0], nextRect[1]) tmpPath.LineTo(pt.x, pt.y) } tmpPath.LineTo(nextRect[0].x, nextRect[0].y) } else { tmpPath.LineTo(rect[3].x, rect[3].y) if !exceed { pt := crossingPointForTwoLines(rect[2], rect[3], nextRect[2], nextRect[3]) tmpPath.LineTo(pt.x, pt.y) } tmpPath.LineTo(nextRect[2].x, nextRect[2].y) } vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) case LineJoinBevel: // Triangle tmpPath.Reset() tmpPath.MoveTo(c.x, c.y) if da < math.Pi { tmpPath.LineTo(rect[1].x, rect[1].y) tmpPath.LineTo(nextRect[0].x, nextRect[0].y) } else { tmpPath.LineTo(rect[3].x, rect[3].y) tmpPath.LineTo(nextRect[2].x, nextRect[2].y) } vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) case LineJoinRound: // Arc tmpPath.Reset() tmpPath.MoveTo(c.x, c.y) if da < math.Pi { tmpPath.Arc(c.x, c.y, op.Width/2, a0, a1, Clockwise) } else { tmpPath.Arc(c.x, c.y, op.Width/2, a0+math.Pi, a1+math.Pi, CounterClockwise) } vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) } } if len(rects) == 0 { continue } // If the flat path is closed, do not render line caps. if flatPath.closed { continue } switch op.LineCap { case LineCapButt: // Do nothing. case LineCapRound: startR, endR := rects[0], rects[len(rects)-1] { c := point{ x: (startR[0].x + startR[2].x) / 2, y: (startR[0].y + startR[2].y) / 2, } a := float32(math.Atan2(float64(startR[0].y-startR[2].y), float64(startR[0].x-startR[2].x))) // Arc tmpPath.Reset() tmpPath.MoveTo(startR[0].x, startR[0].y) tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, CounterClockwise) vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) } { c := point{ x: (endR[1].x + endR[3].x) / 2, y: (endR[1].y + endR[3].y) / 2, } a := float32(math.Atan2(float64(endR[1].y-endR[3].y), float64(endR[1].x-endR[3].x))) // Arc tmpPath.Reset() tmpPath.MoveTo(endR[1].x, endR[1].y) tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, Clockwise) vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) } case LineCapSquare: startR, endR := rects[0], rects[len(rects)-1] { a := math.Atan2(float64(startR[0].y-startR[1].y), float64(startR[0].x-startR[1].x)) s, c := math.Sincos(a) dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2 // Quadrilateral tmpPath.Reset() tmpPath.MoveTo(startR[0].x, startR[0].y) tmpPath.LineTo(startR[0].x+dx, startR[0].y+dy) tmpPath.LineTo(startR[2].x+dx, startR[2].y+dy) tmpPath.LineTo(startR[2].x, startR[2].y) vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) } { a := math.Atan2(float64(endR[1].y-endR[0].y), float64(endR[1].x-endR[0].x)) s, c := math.Sincos(a) dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2 // Quadrilateral tmpPath.Reset() tmpPath.MoveTo(endR[1].x, endR[1].y) tmpPath.LineTo(endR[1].x+dx, endR[1].y+dy) tmpPath.LineTo(endR[3].x+dx, endR[3].y+dy) tmpPath.LineTo(endR[3].x, endR[3].y) vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices) } } } return vertices, indices } func floor(x float32) int { return int(math.Floor(float64(x))) } func ceil(x float32) int { return int(math.Ceil(float64(x))) } // Bounds returns the minimum bounding rectangle of the path. func (p *Path) Bounds() image.Rectangle { // Note that (image.Rectangle).Union doesn't work well with empty rectangles. totalMinX := math.MaxInt totalMinY := math.MaxInt totalMaxX := math.MinInt totalMaxY := math.MinInt for i := range p.subPaths { subPath := &p.subPaths[i] if !subPath.isValid() { continue } minX := math.MaxInt minY := math.MaxInt maxX := math.MinInt maxY := math.MinInt cur := subPath.start for _, op := range subPath.ops { switch op.typ { case opTypeLineTo: minX = min(minX, floor(cur.x), floor(op.p1.x)) minY = min(minY, floor(cur.y), floor(op.p1.y)) maxX = max(maxX, ceil(cur.x), ceil(op.p1.x)) maxY = max(maxY, ceil(cur.y), ceil(op.p1.y)) cur = op.p1 case opTypeQuadTo: // The candidates are the two control points on the edges (cur and op.p2), and an extremum point. // B(t) = (1-t)*(1-t)*p0 + 2*(1-t)*t*p1 + t*t*p2 // B'(t) = 2*(1-t)*(p1-p0) + 2*t*(p2-p1) // B'(t) = 0 <=> t = (p0-p1) / (p0-2*p1+p2) // Avoid an extreme denominator for precision. if denom := cur.x - 2*op.p1.x + op.p2.x; abs(denom) >= 1.0/16.0 { if t := (cur.x - op.p1.x) / denom; t > 0 && t < 1 { ex := (1-t)*(1-t)*cur.x + 2*t*(1-t)*op.p1.x + t*t*op.p2.x minX = min(minX, floor(cur.x), floor(ex), floor(op.p2.x)) maxX = max(maxX, ceil(cur.x), ceil(ex), ceil(op.p2.x)) } else { minX = min(minX, floor(cur.x), floor(op.p2.x)) maxX = max(maxX, ceil(cur.x), ceil(op.p2.x)) } } else { // The curve is almost linear. Include all the points for safety. minX = min(minX, floor(cur.x), floor(op.p1.x), floor(op.p2.x)) maxX = max(maxX, ceil(cur.x), ceil(op.p1.x), ceil(op.p2.x)) } if denom := cur.y - 2*op.p1.y + op.p2.y; abs(denom) >= 1.0/16.0 { if t := (cur.y - op.p1.y) / denom; t > 0 && t < 1 { ex := (1-t)*(1-t)*cur.y + 2*t*(1-t)*op.p1.y + t*t*op.p2.y minY = min(minY, floor(cur.y), floor(ex), floor(op.p2.y)) maxY = max(maxY, ceil(cur.y), ceil(ex), ceil(op.p2.y)) } else { minY = min(minY, floor(cur.y), floor(op.p2.y)) maxY = max(maxY, ceil(cur.y), ceil(op.p2.y)) } } else { minY = min(minY, floor(cur.y), floor(op.p1.y), floor(op.p2.y)) maxY = max(maxY, ceil(cur.y), ceil(op.p1.y), ceil(op.p2.y)) } cur = op.p2 } } totalMinX = min(totalMinX, minX) totalMinY = min(totalMinY, minY) totalMaxX = max(totalMaxX, maxX) totalMaxY = max(totalMaxY, maxY) } if totalMinX >= totalMaxX || totalMinY >= totalMaxY { return image.Rectangle{} } return image.Rect(totalMinX, totalMinY, totalMaxX, totalMaxY) }