This commit is contained in:
we0091234
2023-02-17 10:20:20 +08:00
parent 281527b5c1
commit 63b0df686a
3 changed files with 3 additions and 11 deletions

View File

@@ -4,7 +4,6 @@
**车牌颜色和车牌识别一起训练看这里: [车牌识别+车牌颜色](https://github.com/we0091234/crnn_plate_recognition/tree/plate_color)**
| 模型 | 准确率 | 速度(ms) | 模型大小(MB) | link |
| ------ | ------ | -------- | ------------ | ---------------------------------------------------- |
| small | 96.82% | 1.2ms | 0.67 | [ezhe](https://pan.baidu.com/s/1IsQNPSRuW7bXNWc2ULfFLg) |
@@ -101,9 +100,6 @@ python export.py --weights saved_model/best.pth --save_path saved_model/best.onn
```
导出onnx文件为 saved_model/best.onnx
如果需要onnx支持trt的话支持[这里推理](https://github.com/we0091234/chinese_plate_tensorrt),则加上--trt
#### onnx 推理

View File

@@ -14,7 +14,7 @@ if __name__=="__main__":
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', default=False, help='enable dynamic axis in onnx model')
parser.add_argument('--simplify', action='store_true', default=False, help='simplified onnx')
parser.add_argument('--trt', action='store_true', default=False, help='support trt')
# parser.add_argument('--trt', action='store_true', default=False, help='support trt')
@@ -22,7 +22,7 @@ if __name__=="__main__":
print(opt)
checkpoint = torch.load(opt.weights)
cfg = checkpoint['cfg']
model = myNet_ocr(num_classes=len(plate_chr),cfg=cfg,export=True,trt=opt.trt)
model = myNet_ocr(num_classes=len(plate_chr),cfg=cfg,export=True)
model.load_state_dict(checkpoint['state_dict'])
model.eval()

View File

@@ -3,14 +3,13 @@ import torch
import torch.nn.functional as F
class myNet_ocr(nn.Module):
def __init__(self,cfg=None,num_classes=78,export=False,trt=False):
def __init__(self,cfg=None,num_classes=78,export=False):
super(myNet_ocr, self).__init__()
if cfg is None:
cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256]
# cfg =[32,32,'M',64,64,'M',128,128,'M',256,256]
self.feature = self.make_layers(cfg, True)
self.export = export
self.trt= trt
# self.classifier = nn.Linear(cfg[-1], num_classes)
# self.loc = nn.MaxPool2d((2, 2), (5, 1), (0, 1),ceil_mode=True)
# self.loc = nn.AvgPool2d((2, 2), (5, 2), (0, 1),ceil_mode=False)
@@ -48,9 +47,6 @@ class myNet_ocr(nn.Module):
if self.export:
conv = x.squeeze(2) # b *512 * width
conv = conv.transpose(2,1) # [w, b, c]
if self.trt:
conv =conv.argmax(dim=2)
conv = conv.float()
return conv
else:
b, c, h, w = x.size()