mirror of
https://github.com/Ascend/ascend_community_projects.git
synced 2025-09-26 20:01:17 +08:00
update
This commit is contained in:
@@ -199,17 +199,20 @@ ATC run success, welcome to the next use.
|
||||
|
||||
## 5 编译与运行
|
||||
|
||||
**步骤1** 按照第2小结**环境依赖**中的步骤设置环境变量。
|
||||
**步骤1** 修改run.sh中的环境变量为正确的路径。
|
||||
|
||||
**步骤2** 按照第 4 小节 **模型获取** 中的步骤获得模型文件,放置对应目录下。
|
||||
**步骤2** 按照第 4 小节**模型获取** 中的步骤获得模型文件,放置对应目录下。
|
||||
|
||||
**步骤3** 运行。执行命令:
|
||||
|
||||
```shell
|
||||
#task_type为detect、speed或eval
|
||||
#image_set是一个文本文件,每一行是一个不包含后缀的图片名,eval时使用,VOCdevkit/VOC2007/ImageSets/Main/test.txt
|
||||
#path为image_set中图片所在目录,例如VOCdevkit/VOC2007/JPEGImages/
|
||||
bash run.sh [task_type][image_path][image_set][path]
|
||||
|
||||
#task_type为detect或speed时:
|
||||
#image_set是一个文本文件,每一行是一个不包含后缀的图片名,例如,VOCdevkit/VOC2007/ImageSets/Main/test.txt
|
||||
#image_dir为image_set中图片所在目录,例如,VOCdevkit/VOC2007/JPEGImages/
|
||||
bash run.sh [task_type][image_set][image_dir]
|
||||
#task_type为eval时:
|
||||
#dataset_path为标准VOC数据集路径,例如,./data/VOCdevkit/
|
||||
bash run.sh [task_type][dataset_path]
|
||||
```
|
||||
|
||||
|
BIN
YOLOv5Prune/compute_mAP/__pycache__/voc_eval.cpython-39.pyc
Normal file
BIN
YOLOv5Prune/compute_mAP/__pycache__/voc_eval.cpython-39.pyc
Normal file
Binary file not shown.
94
YOLOv5Prune/compute_mAP/reval_voc.py
Normal file
94
YOLOv5Prune/compute_mAP/reval_voc.py
Normal file
@@ -0,0 +1,94 @@
|
||||
"""Reval = re-eval. Re-evaluate saved detections."""
|
||||
|
||||
import os, sys, argparse
|
||||
import numpy as np
|
||||
import _pickle as cPickle
|
||||
|
||||
from voc_eval import voc_eval
|
||||
|
||||
def parse_args():
|
||||
"""
|
||||
Parse input arguments
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description='Re-evaluate results')
|
||||
parser.add_argument('output_dir', nargs=1, help='results directory',
|
||||
type=str)
|
||||
parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
|
||||
parser.add_argument('--year', dest='year', default='2007', type=str)
|
||||
parser.add_argument('--image_set', dest='image_set', default='test', type=str)
|
||||
|
||||
parser.add_argument('--classes', dest='class_file', default='models/yolov5/voc.names', type=str)
|
||||
|
||||
if len(sys.argv) == 1:
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def get_voc_results_file_template(image_set, out_dir = '.'):
|
||||
filename = 'det_' + image_set + '_{:s}.txt'
|
||||
path = os.path.join(out_dir, filename)
|
||||
return path
|
||||
|
||||
def do_python_eval(devkit_path, year, image_set, classes, output_dir):
|
||||
annopath = os.path.join(
|
||||
devkit_path,
|
||||
'VOC' + year,
|
||||
'Annotations',
|
||||
'{}.xml')
|
||||
imagesetfile = os.path.join(
|
||||
devkit_path,
|
||||
'VOC' + year,
|
||||
'ImageSets',
|
||||
'Main',
|
||||
image_set + '.txt')
|
||||
cachedir = os.path.join(devkit_path, 'annotations_cache')
|
||||
aps = []
|
||||
# The PASCAL VOC metric changed in 2010
|
||||
# use_07_metric = True if int(year) < 2010 else False
|
||||
# print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
|
||||
use_07_metric = False
|
||||
print('devkit_path=',devkit_path,', year = ',year)
|
||||
|
||||
if not os.path.isdir(output_dir):
|
||||
os.mkdir(output_dir)
|
||||
for i, cls in enumerate(classes):
|
||||
if cls == '__background__':
|
||||
continue
|
||||
filename = get_voc_results_file_template(image_set,output_dir).format(cls)
|
||||
rec, prec, ap = voc_eval(
|
||||
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.55,
|
||||
use_07_metric=use_07_metric)
|
||||
aps += [ap]
|
||||
print('AP for {} = {:.4f}'.format(cls, ap))
|
||||
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
|
||||
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
|
||||
print('Mean AP = {:.4f}'.format(np.mean(aps)))
|
||||
print('~~~~~~~~')
|
||||
print('Results:')
|
||||
for ap in aps:
|
||||
print('{:.3f}'.format(ap))
|
||||
print('{:.3f}'.format(np.mean(aps)))
|
||||
print('~~~~~~~~')
|
||||
print('')
|
||||
print('--------------------------------------------------------------')
|
||||
print('Results computed with the **unofficial** Python eval code.')
|
||||
print('Results should be very close to the official MATLAB eval code.')
|
||||
print('-- Thanks, The Management')
|
||||
print('--------------------------------------------------------------')
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
output_dir = os.path.abspath(args.output_dir[0])
|
||||
print(output_dir);
|
||||
with open(args.class_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
classes = [t.strip('\n') for t in lines]
|
||||
|
||||
print('Evaluating detections')
|
||||
do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)
|
194
YOLOv5Prune/compute_mAP/voc_eval.py
Normal file
194
YOLOv5Prune/compute_mAP/voc_eval.py
Normal file
@@ -0,0 +1,194 @@
|
||||
import xml.etree.ElementTree as ET
|
||||
import os
|
||||
import _pickle as cPickle
|
||||
import numpy as np
|
||||
|
||||
def parse_rec(filename):
|
||||
""" Parse a PASCAL VOC xml file """
|
||||
tree = ET.parse(filename)
|
||||
objects = []
|
||||
for obj in tree.findall('object'):
|
||||
obj_struct = {}
|
||||
obj_struct['name'] = obj.find('name').text
|
||||
#obj_struct['pose'] = obj.find('pose').text
|
||||
#obj_struct['truncated'] = int(obj.find('truncated').text)
|
||||
obj_struct['difficult'] = int(obj.find('difficult').text)
|
||||
bbox = obj.find('bndbox')
|
||||
obj_struct['bbox'] = [int(bbox.find('xmin').text),
|
||||
int(bbox.find('ymin').text),
|
||||
int(bbox.find('xmax').text),
|
||||
int(bbox.find('ymax').text)]
|
||||
objects.append(obj_struct)
|
||||
|
||||
return objects
|
||||
|
||||
def voc_ap(rec, prec, use_07_metric=False):
|
||||
""" ap = voc_ap(rec, prec, [use_07_metric])
|
||||
Compute VOC AP given precision and recall.
|
||||
If use_07_metric is true, uses the
|
||||
VOC 07 11 point method (default:False).
|
||||
"""
|
||||
if use_07_metric:
|
||||
# 11 point metric
|
||||
ap = 0.
|
||||
for t in np.arange(0., 1.1, 0.1):
|
||||
if np.sum(rec >= t) == 0:
|
||||
p = 0
|
||||
else:
|
||||
p = np.max(prec[rec >= t])
|
||||
ap = ap + p / 11.
|
||||
else:
|
||||
# correct AP calculation
|
||||
# first append sentinel values at the end
|
||||
mrec = np.concatenate(([0.], rec, [1.]))
|
||||
mpre = np.concatenate(([0.], prec, [0.]))
|
||||
|
||||
# compute the precision envelope
|
||||
for i in range(mpre.size - 1, 0, -1):
|
||||
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||||
|
||||
# to calculate area under PR curve, look for points
|
||||
# where X axis (recall) changes value
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||||
|
||||
# and sum (\Delta recall) * prec
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||||
return ap
|
||||
|
||||
def voc_eval(detpath,
|
||||
annopath,
|
||||
imagesetfile,
|
||||
classname,
|
||||
cachedir,
|
||||
ovthresh=0.5,
|
||||
use_07_metric=False):
|
||||
"""rec, prec, ap = voc_eval(detpath,
|
||||
annopath,
|
||||
imagesetfile,
|
||||
classname,
|
||||
[ovthresh],
|
||||
[use_07_metric])
|
||||
|
||||
Top level function that does the PASCAL VOC evaluation.
|
||||
|
||||
detpath: Path to detections
|
||||
detpath.format(classname) should produce the detection results file.
|
||||
annopath: Path to annotations
|
||||
annopath.format(imagename) should be the xml annotations file.
|
||||
imagesetfile: Text file containing the list of images, one image per line.
|
||||
classname: Category name (duh)
|
||||
cachedir: Directory for caching the annotations
|
||||
[ovthresh]: Overlap threshold (default = 0.5)
|
||||
[use_07_metric]: Whether to use VOC07's 11 point AP computation
|
||||
(default False)
|
||||
"""
|
||||
# assumes detections are in detpath.format(classname)
|
||||
# assumes annotations are in annopath.format(imagename)
|
||||
# assumes imagesetfile is a text file with each line an image name
|
||||
# cachedir caches the annotations in a pickle file
|
||||
|
||||
# first load gt
|
||||
if not os.path.isdir(cachedir):
|
||||
os.mkdir(cachedir)
|
||||
cachefile = os.path.join(cachedir, 'annots.pkl')
|
||||
# read list of images
|
||||
with open(imagesetfile, 'r') as f:
|
||||
lines = f.readlines()
|
||||
imagenames = [x.strip() for x in lines]
|
||||
|
||||
if not os.path.isfile(cachefile):
|
||||
# load annots
|
||||
recs = {}
|
||||
for i, imagename in enumerate(imagenames):
|
||||
recs[imagename] = parse_rec(annopath.format(imagename))
|
||||
#if i % 100 == 0:
|
||||
#print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames))
|
||||
# save
|
||||
#print('Saving cached annotations to {:s}').format(cachefile)
|
||||
with open(cachefile, 'wb') as f:
|
||||
cPickle.dump(recs, f)
|
||||
else:
|
||||
# load
|
||||
print('!!! cachefile = ',cachefile)
|
||||
with open(cachefile, 'rb') as f:
|
||||
recs = cPickle.load(f)
|
||||
|
||||
# extract gt objects for this class
|
||||
class_recs = {}
|
||||
npos = 0
|
||||
for imagename in imagenames:
|
||||
R = [obj for obj in recs[imagename] if obj['name'] == classname]
|
||||
bbox = np.array([x['bbox'] for x in R])
|
||||
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
|
||||
det = [False] * len(R)
|
||||
npos = npos + sum(~difficult)
|
||||
class_recs[imagename] = {'bbox': bbox,
|
||||
'difficult': difficult,
|
||||
'det': det}
|
||||
|
||||
# read dets
|
||||
detfile = detpath.format(classname)
|
||||
with open(detfile, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
splitlines = [x.strip().split(' ') for x in lines]
|
||||
image_ids = [x[0] for x in splitlines]
|
||||
confidence = np.array([float(x[1]) for x in splitlines])
|
||||
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
|
||||
|
||||
# sort by confidence
|
||||
sorted_ind = np.argsort(-confidence)
|
||||
sorted_scores = np.sort(-confidence)
|
||||
BB = BB[sorted_ind, :]
|
||||
image_ids = [image_ids[x] for x in sorted_ind]
|
||||
|
||||
# go down dets and mark TPs and FPs
|
||||
nd = len(image_ids)
|
||||
tp = np.zeros(nd)
|
||||
fp = np.zeros(nd)
|
||||
for d in range(nd):
|
||||
R = class_recs[image_ids[d]]
|
||||
bb = BB[d, :].astype(float)
|
||||
ovmax = -np.inf
|
||||
BBGT = R['bbox'].astype(float)
|
||||
|
||||
if BBGT.size > 0:
|
||||
# compute overlaps
|
||||
# intersection
|
||||
ixmin = np.maximum(BBGT[:, 0], bb[0])
|
||||
iymin = np.maximum(BBGT[:, 1], bb[1])
|
||||
ixmax = np.minimum(BBGT[:, 2], bb[2])
|
||||
iymax = np.minimum(BBGT[:, 3], bb[3])
|
||||
iw = np.maximum(ixmax - ixmin + 1., 0.)
|
||||
ih = np.maximum(iymax - iymin + 1., 0.)
|
||||
inters = iw * ih
|
||||
|
||||
# union
|
||||
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
|
||||
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
|
||||
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
|
||||
|
||||
overlaps = inters / uni
|
||||
ovmax = np.max(overlaps)
|
||||
jmax = np.argmax(overlaps)
|
||||
|
||||
if ovmax > ovthresh:
|
||||
if not R['difficult'][jmax]:
|
||||
if not R['det'][jmax]:
|
||||
tp[d] = 1.
|
||||
R['det'][jmax] = 1
|
||||
else:
|
||||
fp[d] = 1.
|
||||
else:
|
||||
fp[d] = 1.
|
||||
|
||||
# compute precision recall
|
||||
fp = np.cumsum(fp)
|
||||
tp = np.cumsum(tp)
|
||||
rec = tp / float(npos)
|
||||
# avoid divide by zero in case the first detection matches a difficult
|
||||
# ground truth
|
||||
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
||||
ap = voc_ap(rec, prec, use_07_metric)
|
||||
|
||||
return rec, prec, ap
|
@@ -7,7 +7,7 @@ d='.' # unzip directory
|
||||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
||||
f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
|
||||
f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
|
||||
for f in $f3 $f2 $f1; do
|
||||
for f in $f2 $f1; do
|
||||
echo 'Downloading' $url$f '...'
|
||||
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
||||
done
|
||||
|
@@ -24,8 +24,8 @@
|
||||
#include "color.h"
|
||||
|
||||
|
||||
float pad_w, pad_h;
|
||||
float ratio;
|
||||
float pad_w = 0.0, pad_h = 0.0;
|
||||
float ratio = 1.0;
|
||||
|
||||
|
||||
namespace {
|
||||
@@ -227,18 +227,27 @@ void SaveTxt(const std::string& result, const std::string& line){
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
if(argc < 2){
|
||||
std::string msg = "usage : bash run.sh [image_set] [pipline_file]";
|
||||
cout<<msg;
|
||||
if(argc < 3){
|
||||
std::string msg = "usage : bash run.sh [task_type][image_set][image_dir] or bash run.sh eval [dataset_path]";
|
||||
std::cout<<msg<<std::endl;
|
||||
return 1;
|
||||
|
||||
}
|
||||
const std::string image_set_file = argv[1];
|
||||
const std::string pipelineConfigPath = argv[2];
|
||||
const std::string task = argv[1];
|
||||
std::string image_set_file = argv[2];
|
||||
std::string image_set_path = argv[3];
|
||||
std::string pipelineConfigPath = "";
|
||||
if(task == "eval"){
|
||||
pipelineConfigPath = "pipeline/eval.pipeline";
|
||||
}else if(task == "speed" || task == "detect"){
|
||||
pipelineConfigPath = "pipeline/detect.pipeline";
|
||||
}else {
|
||||
std::cout<<"Undefined task!"<<std::endl;
|
||||
return 1;
|
||||
}
|
||||
bool save_image = false, save_txt = false;
|
||||
|
||||
bool eval = pipelineConfigPath.find("eval") != std::string::npos;
|
||||
|
||||
bool save_image = false, save_txt = true, speed = false;
|
||||
if(task == "eval") save_txt = true;
|
||||
if(task == "detect") save_image = true;
|
||||
|
||||
double time_min = DBL_MAX;
|
||||
double time_max = -DBL_MAX;
|
||||
@@ -246,7 +255,6 @@ int main(int argc, char* argv[])
|
||||
long loop_num = 0;
|
||||
|
||||
std::ifstream in(image_set_file);
|
||||
std::ofstream *outfile;
|
||||
std::string line;
|
||||
|
||||
if(save_image){
|
||||
@@ -282,22 +290,26 @@ int main(int argc, char* argv[])
|
||||
|
||||
while(getline(in, line)){
|
||||
loop_num++;
|
||||
|
||||
std::string streamName = "detection";
|
||||
std::string img_path = "/home/wangshengke3/VOCdevkit/VOC2007/JPEGImages/"+line+".jpg";
|
||||
|
||||
cv::Mat src = cv::imread(img_path);
|
||||
cv::Mat img = letterBox(src);
|
||||
cv::imwrite("./tmp.jpg", img);
|
||||
|
||||
std::string img_path = image_set_path+'/'+line+".jpg";
|
||||
MxStream::MxstDataInput dataBuffer;
|
||||
ret = ReadFile("./tmp.jpg", dataBuffer);
|
||||
|
||||
cv::Mat src;
|
||||
auto start = clock();
|
||||
if(task == "eval"){
|
||||
src = cv::imread(img_path);
|
||||
cv::Mat img = letterBox(src);
|
||||
cv::imwrite("./tmp.jpg", img);
|
||||
ret = ReadFile("./tmp.jpg", dataBuffer);
|
||||
}else if(task == "detect"){
|
||||
src = cv::imread(img_path);
|
||||
ret = ReadFile(img_path,dataBuffer);
|
||||
}else{
|
||||
ret = ReadFile(img_path,dataBuffer);
|
||||
}
|
||||
if (ret != APP_ERR_OK) {
|
||||
LogError << GetError(ret) << "Failed to read image file.";
|
||||
return ret;
|
||||
}
|
||||
auto start = clock();
|
||||
// send data into stream
|
||||
ret = mxStreamManager.SendData(streamName, inPluginId, dataBuffer);
|
||||
if (ret != APP_ERR_OK) {
|
||||
@@ -319,7 +331,6 @@ int main(int argc, char* argv[])
|
||||
time_max = (std::max)(time_max, time);
|
||||
time_avg += time;
|
||||
std::string result = std::string((char *)output->dataPtr, output->dataSize);
|
||||
// LogInfo <<"Results:" << result;
|
||||
|
||||
if(save_image == true)
|
||||
SaveImage(result, src, line);
|
||||
@@ -331,14 +342,15 @@ int main(int argc, char* argv[])
|
||||
dataBuffer.dataPtr = nullptr;
|
||||
}
|
||||
time_avg /= loop_num;
|
||||
char msg[256];
|
||||
sprintf(msg,"image count = %ld\n min = %.2fms max = %.2fms avg = %.2fms \n avg fps = %.2f", loop_num, time_min *1000, time_max*1000, time_avg*1000, 1000/time_max*1000);
|
||||
LogInfo<<"推理时间统计:";
|
||||
LogInfo<<msg;
|
||||
}
|
||||
|
||||
in.close();
|
||||
mxStreamManager.DestroyAllStreams();
|
||||
mxStreamManager.DestroyAllStreams();
|
||||
|
||||
char msg[256];
|
||||
sprintf(msg,"image count = %ld \nmin = %.2fms max = %.2fms avg = %.2fms \navg fps = %.2f fps\n", loop_num, time_min *1000, time_max*1000, time_avg*1000, 1000/(time_avg*1000));
|
||||
std::cout<<"时间统计:\n";
|
||||
std::cout<< msg;
|
||||
|
||||
return 0;
|
||||
}
|
@@ -3,7 +3,7 @@ source env.sh
|
||||
atc \
|
||||
--model=prune55_t.onnx \
|
||||
--framework=5 \
|
||||
--output=./prune55_t_rgb \
|
||||
--output=./prune55_t \
|
||||
--input_format=NCHW \
|
||||
--input_shape="images:1,3,512,512" \
|
||||
--enable_small_channel=1 \
|
||||
|
@@ -3,7 +3,7 @@
|
||||
"stream_config": {
|
||||
"deviceId": "0"
|
||||
},
|
||||
"mxpi_imagedecoder0": {
|
||||
"mxpi_imagedecoder0": {
|
||||
"factory": "mxpi_imagedecoder",
|
||||
"next": "mxpi_imageresize0"
|
||||
},
|
||||
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"mxpi_modelinfer0": {
|
||||
"props": {
|
||||
"parentName": "mxpi_imagedecoder0",
|
||||
"parentName": "mxpi_imageresize0",
|
||||
"modelPath": "models/yolov5/prune55_t.om",
|
||||
"postProcessConfigPath": "models/yolov5/yolov5_detect.cfg",
|
||||
"labelPath": "models/yolov5/voc.names",
|
||||
|
@@ -11,7 +11,7 @@
|
||||
"props": {
|
||||
"parentName": "mxpi_imagedecoder0",
|
||||
"modelPath": "models/yolov5/prune55_t.om",
|
||||
"postProcessConfigPath": "models/yolov5/yolov5.cfg",
|
||||
"postProcessConfigPath": "models/yolov5/yolov5_eval.cfg",
|
||||
"labelPath": "models/yolov5/voc.names",
|
||||
"postProcessLibPath": "libMpYOLOv5PostProcessor.so"
|
||||
},
|
||||
|
@@ -5,9 +5,51 @@
|
||||
# Author: MindX SDK
|
||||
# Create: 2020
|
||||
# History: NA
|
||||
if [ $# -le 1 ]
|
||||
then
|
||||
echo "Usage:"
|
||||
echo "bash run.sh [task_type][image_set][image_dir] or bash run.sh eval [dataset_path]"
|
||||
exit 1
|
||||
fi
|
||||
get_real_path() {
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
if [[ "${1}"x = "eval"x ]]
|
||||
then
|
||||
task_type=$1
|
||||
dataset_path=$(get_real_path $2)
|
||||
image_set=$(get_real_path $2)"/VOC2007/ImageSets/Main/test.txt"
|
||||
image_dir=$(get_real_path $2)"/VOC2007/JPEGImages"
|
||||
elif [[ "${1}"x = "detect"x || "${1}"x = "speed"x ]]
|
||||
then
|
||||
task_type=$1
|
||||
image_set=$(get_real_path $2)
|
||||
image_dir=$(get_real_path $3)
|
||||
else
|
||||
echo "Undefined task!"
|
||||
exit 1
|
||||
fi
|
||||
if [[ ! -f $image_set ]]
|
||||
then
|
||||
echo "error : $image_set is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ ! -d $image_dir ]]
|
||||
then
|
||||
echo "error : $image_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
if [[ ! -d $dataset_path ]]
|
||||
then
|
||||
echo "error : $dataset_path is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
set -e
|
||||
|
||||
CUR_PATH=$(cd "$(dirname "$0")" || { warn "Failed to check path/to/run.sh" ; exit ; } ; pwd)
|
||||
|
||||
# Simple log helper functions
|
||||
@@ -23,9 +65,18 @@ rm -rf ./build
|
||||
# complie
|
||||
cmake -S . -Bbuild
|
||||
make -C ./build -j
|
||||
echo "build done"
|
||||
|
||||
export LD_LIBRARY_PATH="${MX_SDK_HOME}/lib":"${MX_SDK_HOME}/opensource/lib":"${MX_SDK_HOME}/opensource/lib64":${LD_LIBRARY_PATH}
|
||||
|
||||
# run
|
||||
./main
|
||||
echo "start" $task_type "task"
|
||||
echo "image_set" $image_set
|
||||
echo "image_dir" $image_dir
|
||||
./main $task_type $image_set $image_dir
|
||||
if [[ "$task_type"x = "eval"x ]]
|
||||
then
|
||||
echo "compute mAP..."
|
||||
python compute_mAP/reval_voc.py txt_result --voc_dir $dataset_path
|
||||
fi
|
||||
exit 0
|
Reference in New Issue
Block a user