[西安交通大学][边缘开发套件社区]铝材表面缺陷检测

This commit is contained in:
jtc
2022-09-20 16:47:28 +08:00
parent 1bd93f2cc7
commit 3f33e51c14
6 changed files with 50 additions and 150 deletions

View File

@@ -15,14 +15,13 @@
import os
import json
import stat
import cv2
from StreamManagerApi import *
import time
import numpy as np
from utils import *
import glob
import cv2
from StreamManagerApi import StreamManagerApi, MxDataInput
import numpy as np
from utils import xyxy2xywh
from plots import Annotator, colors
from plots import box_label, colors
names = ['non_conduct', 'abrasion_mark', 'corner_leak', 'orange_peel', 'leak', 'jet_flow', 'paint_bubble', 'pit',
'motley', 'dirty_spot']
@@ -40,7 +39,6 @@ if __name__ == '__main__':
if ret != 0:
print("Failed to init Stream manager, ret=%s" % str(ret))
exit()
start = time.time()
# create streams by pipeline config file
with open("./pipeline/AlDefectDetection.pipeline", 'rb') as f:
pipelineStr = f.read()
@@ -95,8 +93,6 @@ if __name__ == '__main__':
with open(ori_img_path, 'rb') as f:
dataInput.data = f.read()
annotator = Annotator(ori_img, line_width=3, example=str(names))
# Inputs data to a specified stream based on streamName.
streamName = b'classification+detection'
inPluginId = 0
@@ -135,9 +131,8 @@ if __name__ == '__main__':
f.write(('%g ' * len(line)).rstrip() % line + '\n')
label = f'{classVec[0]["className"]} {classVec[0]["confidence"]:.4f}'
annotator.box_label(xyxy, label, color=colors(names.index(classVec[0]["className"]), False))
save_img = box_label(ori_img, xyxy, label, color=colors[names.index(classVec[0]["className"])])
save_img = annotator.result()
cv2.imwrite(DETECT_IMG_PATH + 'result' + item, save_img)
TESTIMGS += 1
######################################################################################