Files
ascend_community_projects/AluminumDefectDetection/eval.py

147 lines
5.5 KiB
Python

# Copyright(C) 2022. Huawei Technologies Co.,Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import stat
import glob
import cv2
from StreamManagerApi import StreamManagerApi, MxDataInput
import numpy as np
from utils import xyxy2xywh
from plots import box_label, colors
names = ['non_conduct', 'abrasion_mark', 'corner_leak', 'orange_peel', 'leak', 'jet_flow', 'paint_bubble', 'pit',
'motley', 'dirty_spot']
if __name__ == '__main__':
MODES = stat.S_IWUSR | stat.S_IRUSR
# init stream manager
dict_classes = {
"non_conduct": "0", "abrasion_mark": "1", "corner_leak": "2", "orange_peel": "3", "leak": "4", "jet_flow": "5",
"paint_bubble": "6", "pit": "7", "motley": "8", "dirty_spot": "9"
}
streamManagerApi = StreamManagerApi()
ret = streamManagerApi.InitManager()
if ret != 0:
print("Failed to init Stream manager, ret=%s" % str(ret))
exit()
# create streams by pipeline config file
with open("./pipeline/AlDefectDetection.pipeline", 'rb') as f:
pipelineStr = f.read()
ret = streamManagerApi.CreateMultipleStreams(pipelineStr)
if ret != 0:
print("Failed to create Stream, ret=%s" % str(ret))
exit()
print("load pipline done!")
TESTIMGS = 0
# Input object of streams -- detection target
ORI_IMG_PATH = "./test/data/test/"
TXT_PATH = "./test/" + "test_out_txt/"
DETECT_IMG_PATH = "./test/" + "img_detected/"
PRE_IMG_PATH = "./test/" + "img_pre/"
if not os.path.exists(TXT_PATH):
os.makedirs(TXT_PATH)
if not os.path.exists(DETECT_IMG_PATH):
os.makedirs(DETECT_IMG_PATH)
if not os.path.exists(PRE_IMG_PATH):
os.makedirs(PRE_IMG_PATH)
files_list = glob.glob(ORI_IMG_PATH + '/*.jpg')
if len(files_list) == 0:
print("The input directory is EMPTY!")
print("Please place the picture in './test/data/test/' !")
exit()
for item in os.listdir(ORI_IMG_PATH):
ori_img_path = os.path.join(ORI_IMG_PATH, item)
if os.path.getsize(ori_img_path) == 0:
print("Error!The test image is empty.")
continue
ori_img = cv2.imread(ori_img_path) # 读取图片
h0, w0 = ori_img.shape[:2]
img_size = 640
r = img_size / max(h0, w0) # ratio
input_shape = (640, 640)
print("file_path:", ori_img_path)
img_name = item.split(".")[0]
img_txt = TXT_PATH + img_name + ".txt"
if os.path.exists(img_txt):
os.remove(img_txt)
# Construct the input of the stream
dataInput = MxDataInput()
with open(ori_img_path, 'rb') as f:
dataInput.data = f.read()
# Inputs data to a specified stream based on streamName.
streamName = b'classification+detection'
inPluginId = 0
uniqueId = streamManagerApi.SendDataWithUniqueId(streamName, inPluginId, dataInput)
if uniqueId < 0:
print("Failed to send data to stream.")
exit()
# Obtain the inference result by specifying streamName and uniqueId.
inferResult = streamManagerApi.GetResultWithUniqueId(streamName, uniqueId, 5000)
if inferResult.errorCode != 0:
print("GetResultWithUniqueId error. errorCode=%d, errorMsg=%s" % (
inferResult.errorCode, inferResult.data.decode()))
exit()
results = json.loads(inferResult.data.decode())
if not results:
print("No object detected")
with os.fdopen(os.open(img_txt, os.O_RDWR | os.O_CREAT, MODES), 'a+') as f:
pass
continue
img = cv2.imread(ori_img_path, cv2.IMREAD_COLOR)
gn = np.array(ori_img.shape)[[1, 0, 1, 0]]
bboxes = []
classVecs = []
for info in results['MxpiObject']:
bboxes.append([float(info['x0']), float(info['y0']), float(info['x1']), float(info['y1'])])
classVecs.append(info["classVec"])
for (xyxy, classVec) in zip(bboxes, classVecs):
xyxy = np.array(xyxy)
xywh = (xyxy2xywh(xyxy.reshape(1, 4)) / gn).reshape(-1).tolist() # normalized xywh
line = (
int(dict_classes[classVec[0]["className"]]), *xywh, round(classVec[0]["confidence"], 6)) # label format
with os.fdopen(os.open(img_txt, os.O_RDWR | os.O_CREAT, MODES), 'a+') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
label = f'{classVec[0]["className"]} {classVec[0]["confidence"]:.4f}'
save_img = box_label(ori_img, xyxy, label, color=colors[names.index(classVec[0]["className"])])
cv2.imwrite(DETECT_IMG_PATH + 'result' + item, save_img)
TESTIMGS += 1
######################################################################################
# print the infer result
print(inferResult.data.decode())
# Mark image count
print("Image count:%d" % TESTIMGS)
# destroy streams
streamManagerApi.DestroyAllStreams()