mirror of
https://github.com/hpc203/YOLOP-opencv-dnn.git
synced 2025-09-26 20:31:17 +08:00
158 lines
8.1 KiB
Python
158 lines
8.1 KiB
Python
import cv2
|
||
import argparse
|
||
import numpy as np
|
||
|
||
class yolop():
|
||
def __init__(self, confThreshold=0.25, nmsThreshold=0.5, objThreshold=0.45):
|
||
with open('bdd100k.names', 'rt') as f:
|
||
self.classes = f.read().rstrip('\n').split('\n') ###这个是在bdd100k数据集上训练的模型做opencv部署的,如果你在自己的数据集上训练出的模型做opencv部署,那么需要修改self.classes
|
||
num_classes = len(self.classes)
|
||
anchors = [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]]
|
||
self.nl = len(anchors)
|
||
self.na = len(anchors[0]) // 2
|
||
self.no = num_classes + 5
|
||
self.stride = np.array([8., 16., 32.])
|
||
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
|
||
self.inpWidth = 640
|
||
self.inpHeight = 640
|
||
self.generate_grid()
|
||
self.net = cv2.dnn.readNet('yolop.onnx')
|
||
self.confThreshold = confThreshold
|
||
self.nmsThreshold = nmsThreshold
|
||
self.objThreshold = objThreshold
|
||
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
|
||
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
|
||
self.keep_ratio = True
|
||
def generate_grid(self):
|
||
self.grid = [np.zeros(1)] * self.nl
|
||
self.length = []
|
||
self.areas = []
|
||
for i in range(self.nl):
|
||
h, w = int(self.inpHeight/self.stride[i]), int(self.inpWidth/self.stride[i])
|
||
self.length.append(int(self.na * h * w))
|
||
self.areas.append(h*w)
|
||
if self.grid[i].shape[2:4] != (h,w):
|
||
self.grid[i] = self._make_grid(w, h)
|
||
def _make_grid(self, nx=20, ny=20):
|
||
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
|
||
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
|
||
|
||
def postprocess(self, frame, outs, newh, neww, padh, padw):
|
||
frameHeight = frame.shape[0]
|
||
frameWidth = frame.shape[1]
|
||
ratioh, ratiow = frameHeight / newh, frameWidth / neww
|
||
# Scan through all the bounding boxes output from the network and keep only the
|
||
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
||
classIds = []
|
||
confidences = []
|
||
boxes = []
|
||
for detection in outs:
|
||
scores = detection[5:]
|
||
classId = np.argmax(scores)
|
||
confidence = scores[classId]
|
||
if confidence > self.confThreshold and detection[4] > self.objThreshold:
|
||
center_x = int((detection[0]-padw) * ratiow)
|
||
center_y = int((detection[1]-padh) * ratioh)
|
||
width = int(detection[2] * ratiow)
|
||
height = int(detection[3] * ratioh)
|
||
left = int(center_x - width / 2)
|
||
top = int(center_y - height / 2)
|
||
classIds.append(classId)
|
||
confidences.append(float(confidence) * detection[4])
|
||
boxes.append([left, top, width, height])
|
||
|
||
# Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||
# lower confidences.
|
||
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold)
|
||
for i in indices:
|
||
i = i[0]
|
||
box = boxes[i]
|
||
left = box[0]
|
||
top = box[1]
|
||
width = box[2]
|
||
height = box[3]
|
||
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
|
||
return frame
|
||
def drawPred(self, frame, classId, conf, left, top, right, bottom):
|
||
# Draw a bounding box.
|
||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
|
||
|
||
label = '%.2f' % conf
|
||
label = '%s:%s' % (self.classes[classId], label)
|
||
|
||
# Display the label at the top of the bounding box
|
||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
top = max(top, labelSize[1])
|
||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
|
||
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=1)
|
||
return frame
|
||
def resize_image(self, srcimg):
|
||
padh, padw, newh, neww = 0, 0, self.inpHeight, self.inpWidth
|
||
if self.keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
|
||
hw_scale = srcimg.shape[0] / srcimg.shape[1]
|
||
if hw_scale > 1:
|
||
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
|
||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||
padw = int((self.inpWidth - neww) * 0.5)
|
||
img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT,
|
||
value=0) # add border
|
||
else:
|
||
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
|
||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||
padh = int((self.inpHeight - newh) * 0.5)
|
||
img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT, value=0)
|
||
else:
|
||
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
|
||
return img, newh, neww, padh, padw
|
||
|
||
def _normalize(self, img): ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
|
||
img = img.astype(np.float32) / 255.0
|
||
img = (img - self.mean) / self.std
|
||
return img
|
||
def detect(self, srcimg):
|
||
img, newh, neww, padh, padw = self.resize_image(srcimg)
|
||
img = self._normalize(img)
|
||
blob = cv2.dnn.blobFromImage(img)
|
||
# Sets the input to the network
|
||
self.net.setInput(blob)
|
||
|
||
# Runs the forward pass to get output of the output layers
|
||
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
||
# inference output
|
||
outimg = srcimg.copy()
|
||
drive_area_mask = outs[1][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
|
||
seg_id = np.argmax(drive_area_mask, axis=0).astype(np.uint8)
|
||
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||
outimg[seg_id == 1] = [0, 255, 0]
|
||
|
||
lane_line_mask = outs[2][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
|
||
seg_id = np.argmax(lane_line_mask, axis=0).astype(np.uint8)
|
||
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
|
||
outimg[seg_id == 1] = [255, 0, 0]
|
||
|
||
det_out = outs[0]
|
||
row_ind = 0
|
||
for i in range(self.nl):
|
||
det_out[row_ind:row_ind+self.length[i], 0:2] = (det_out[row_ind:row_ind+self.length[i], 0:2] * 2. - 0.5 + np.tile(self.grid[i],(self.na, 1))) * int(self.stride[i])
|
||
det_out[row_ind:row_ind+self.length[i], 2:4] = (det_out[row_ind:row_ind+self.length[i], 2:4] * 2) ** 2 * np.repeat(self.anchor_grid[i], self.areas[i], axis=0)
|
||
row_ind += self.length[i]
|
||
outimg = self.postprocess(outimg, det_out, newh, neww, padh, padw)
|
||
return outimg
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--imgpath", type=str, default='images/0ace96c3-48481887.jpg', help="image path")
|
||
parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
|
||
parser.add_argument('--nmsThreshold', default=0.45, type=float, help='nms iou thresh')
|
||
parser.add_argument('--objThreshold', default=0.5, type=float, help='object confidence')
|
||
args = parser.parse_args()
|
||
|
||
yolonet = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
|
||
srcimg = cv2.imread(args.imgpath)
|
||
outimg = yolonet.detect(srcimg)
|
||
|
||
winName = 'Deep learning object detection in OpenCV'
|
||
cv2.namedWindow(winName, 0)
|
||
cv2.imshow(winName, outimg)
|
||
cv2.waitKey(0)
|
||
cv2.destroyAllWindows() |