Add files via upload

This commit is contained in:
hpc203
2021-08-29 10:48:26 +08:00
committed by GitHub
commit e7e1025c16
10 changed files with 523 additions and 0 deletions

1
bdd100k.names Normal file
View File

@@ -0,0 +1 @@
car

136
export_onnx.py Normal file
View File

@@ -0,0 +1,136 @@
import torch
import torch.nn as nn
from lib.models.common import Conv, SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect, SharpenConv
from torch.nn import Upsample
import cv2
# The lane line and the driving area segment branches without share information with each other and without link
YOLOP = [
[24, 33, 42], # Det_out_idx, Da_Segout_idx, LL_Segout_idx
[-1, Focus, [3, 32, 3]], # 0
[-1, Conv, [32, 64, 3, 2]], # 1
[-1, BottleneckCSP, [64, 64, 1]], # 2
[-1, Conv, [64, 128, 3, 2]], # 3
[-1, BottleneckCSP, [128, 128, 3]], # 4
[-1, Conv, [128, 256, 3, 2]], # 5
[-1, BottleneckCSP, [256, 256, 3]], # 6
[-1, Conv, [256, 512, 3, 2]], # 7
[-1, SPP, [512, 512, [5, 9, 13]]], # 8
[-1, BottleneckCSP, [512, 512, 1, False]], # 9
[-1, Conv, [512, 256, 1, 1]], # 10
[-1, Upsample, [None, 2, 'nearest']], # 11
[[-1, 6], Concat, [1]], # 12
[-1, BottleneckCSP, [512, 256, 1, False]], # 13
[-1, Conv, [256, 128, 1, 1]], # 14
[-1, Upsample, [None, 2, 'nearest']], # 15
[[-1, 4], Concat, [1]], # 16 #Encoder
[-1, BottleneckCSP, [256, 128, 1, False]], # 17
[-1, Conv, [128, 128, 3, 2]], # 18
[[-1, 14], Concat, [1]], # 19
[-1, BottleneckCSP, [256, 256, 1, False]], # 20
[-1, Conv, [256, 256, 3, 2]], # 21
[[-1, 10], Concat, [1]], # 22
[-1, BottleneckCSP, [512, 512, 1, False]], # 23
[[17, 20, 23], Detect,
[1, [[3, 9, 5, 11, 4, 20], [7, 18, 6, 39, 12, 31], [19, 50, 38, 81, 68, 157]], [128, 256, 512]]],
# Detection head 24
[16, Conv, [256, 128, 3, 1]], # 25
[-1, Upsample, [None, 2, 'nearest']], # 26
[-1, BottleneckCSP, [128, 64, 1, False]], # 27
[-1, Conv, [64, 32, 3, 1]], # 28
[-1, Upsample, [None, 2, 'nearest']], # 29
[-1, Conv, [32, 16, 3, 1]], # 30
[-1, BottleneckCSP, [16, 8, 1, False]], # 31
[-1, Upsample, [None, 2, 'nearest']], # 32
[-1, Conv, [8, 2, 3, 1]], # 33 Driving area segmentation head
[16, Conv, [256, 128, 3, 1]], # 34
[-1, Upsample, [None, 2, 'nearest']], # 35
[-1, BottleneckCSP, [128, 64, 1, False]], # 36
[-1, Conv, [64, 32, 3, 1]], # 37
[-1, Upsample, [None, 2, 'nearest']], # 38
[-1, Conv, [32, 16, 3, 1]], # 39
[-1, BottleneckCSP, [16, 8, 1, False]], # 40
[-1, Upsample, [None, 2, 'nearest']], # 41
[-1, Conv, [8, 2, 3, 1]] # 42 Lane line segmentation head
]
class MCnet(nn.Module):
def __init__(self, block_cfg):
super(MCnet, self).__init__()
layers, save = [], []
self.nc = 1
self.detector_index = -1
self.det_out_idx = block_cfg[0][0]
self.seg_out_idx = block_cfg[0][1:]
self.num_anchors = 3
self.num_outchannel = 5 + self.nc
# Build model
for i, (from_, block, args) in enumerate(block_cfg[1:]):
block = eval(block) if isinstance(block, str) else block # eval strings
if block is Detect:
self.detector_index = i
block_ = block(*args)
block_.index, block_.from_ = i, from_
layers.append(block_)
save.extend(x % i for x in ([from_] if isinstance(from_, int) else from_) if x != -1) # append to savelist
assert self.detector_index == block_cfg[0][0]
self.model, self.save = nn.Sequential(*layers), sorted(save)
self.names = [str(i) for i in range(self.nc)]
# set stride、anchor for detector
# Detector = self.model[self.detector_index] # detector
# if isinstance(Detector, Detect):
# s = 128 # 2x min stride
# # for x in self.forward(torch.zeros(1, 3, s, s)):
# # print (x.shape)
# with torch.no_grad():
# model_out = self.forward(torch.zeros(1, 3, s, s))
# detects, _, _ = model_out
# Detector.stride = torch.tensor([s / x.shape[-2] for x in detects]) # forward
# # print("stride"+str(Detector.stride ))
# Detector.anchors /= Detector.stride.view(-1, 1, 1) # Set the anchors for the corresponding scale
# check_anchor_order(Detector)
# self.stride = Detector.stride
def forward(self, x):
cache = []
out = []
det_out = None
for i, block in enumerate(self.model):
if block.from_ != -1:
x = cache[block.from_] if isinstance(block.from_, int) else [x if j == -1 else cache[j] for j in block.from_] # calculate concat detect
x = block(x)
if i in self.seg_out_idx: # save driving area segment result
# m = nn.Sigmoid()
# out.append(m(x))
out.append(torch.sigmoid(x))
if i == self.detector_index:
det_out = x
cache.append(x if block.index in self.save else None)
out[0] = out[0].view(2, 640, 640)
out[1] = out[1].view(2, 640, 640)
return det_out, out[0], out[1]
if __name__ == "__main__":
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = MCnet(YOLOP)
checkpoint = torch.load('weights/End-to-end.pth', map_location=device)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
output_onnx = 'yolop.onnx'
inputs = torch.randn(1, 3, 640, 640)
# with torch.no_grad():
# output = model(inputs)
# print(output)
torch.onnx.export(model, inputs, output_onnx, verbose=False, opset_version=12, input_names=['images'], output_names=['det_out', 'drive_area_seg', 'lane_line_seg'])
print('convert', output_onnx, 'to onnx finish!!!')
try:
dnnnet = cv2.dnn.readNet(output_onnx)
print('read sucess')
except:
print('read failed')

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

228
main.cpp Normal file
View File

@@ -0,0 +1,228 @@
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
class YOLO
{
public:
YOLO(string modelpath, float confThreshold, float nmsThreshold, float objThreshold);
Mat detect(Mat& frame);
private:
const float mean[3] = { 0.485, 0.456, 0.406 };
const float std[3] = { 0.229, 0.224, 0.225 };
const float anchors[3][6] = { {3,9,5,11,4,20}, {7,18,6,39,12,31},{19,50,38,81,68,157} };
const float stride[3] = { 8.0, 16.0, 32.0 };
const string classesFile = "bdd100k.names";
const int inpWidth = 640;
const int inpHeight = 640;
float confThreshold;
float nmsThreshold;
float objThreshold;
const bool keep_ratio = true;
vector<string> classes;
Net net;
Mat resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left);
void normalize(Mat& srcimg);
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
};
YOLO::YOLO(string modelpath, float confThreshold, float nmsThreshold, float objThreshold)
{
this->confThreshold = confThreshold;
this->nmsThreshold = nmsThreshold;
this->objThreshold = objThreshold;
ifstream ifs(this->classesFile.c_str());
string line;
while (getline(ifs, line)) this->classes.push_back(line);
this->net = readNet(modelpath);
}
Mat YOLO::resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left)
{
int srch = srcimg.rows, srcw = srcimg.cols;
*newh = this->inpHeight;
*neww = this->inpWidth;
Mat dstimg;
if (this->keep_ratio && srch != srcw)
{
float hw_scale = (float)srch / srcw;
if (hw_scale > 1)
{
*newh = this->inpHeight;
*neww = int(this->inpWidth / hw_scale);
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*left = int((this->inpWidth - *neww) * 0.5);
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 0);
}
else
{
*newh = (int)this->inpHeight * hw_scale;
*neww = this->inpWidth;
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*top = (int)(this->inpHeight - *newh) * 0.5;
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 0);
}
}
else
{
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
}
return dstimg;
}
void YOLO::normalize(Mat& img)
{
img.convertTo(img, CV_32F);
int i = 0, j = 0;
const float scale = 1.0 / 255.0;
for (i = 0; i < img.rows; i++)
{
float* pdata = (float*)(img.data + i * img.step);
for (j = 0; j < img.cols; j++)
{
pdata[0] = (pdata[0] * scale - this->mean[0]) / this->std[0];
pdata[1] = (pdata[1] * scale - this->mean[1]) / this->std[1];
pdata[2] = (pdata[2] * scale - this->mean[2]) / this->std[2];
pdata += 3;
}
}
}
void YOLO::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
label = this->classes[classId] + ":" + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 1);
}
Mat YOLO::detect(Mat& srcimg)
{
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dstimg = this->resize_image(srcimg, &newh, &neww, &padh, &padw);
this->normalize(dstimg);
Mat blob = blobFromImage(dstimg);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
Mat outimg = srcimg.clone();
float ratioh = (float)newh / srcimg.rows;
float ratiow = (float)neww / srcimg.cols;
int i = 0, j = 0, area = this->inpHeight*this->inpWidth;
float* pdata_drive = (float*)outs[1].data; ///drive area segment
float* pdata_lane_line = (float*)outs[2].data; ///lane line segment
for (i = 0; i < outimg.rows; i++)
{
for (j = 0; j < outimg.cols; j++)
{
const int x = int(j*ratiow) + padw;
const int y = int(i*ratioh) + padh;
if (pdata_drive[y * this->inpWidth + x] < pdata_drive[area + y * this->inpWidth + x])
{
outimg.at<Vec3b>(i, j)[0] = 0;
outimg.at<Vec3b>(i, j)[1] = 255;
outimg.at<Vec3b>(i, j)[2] = 0;
}
if (pdata_lane_line[y * this->inpWidth + x] < pdata_lane_line[area + y * this->inpWidth + x])
{
outimg.at<Vec3b>(i, j)[0] = 255;
outimg.at<Vec3b>(i, j)[1] = 0;
outimg.at<Vec3b>(i, j)[2] = 0;
}
}
}
/////generate proposals
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
ratioh = (float)srcimg.rows / newh;
ratiow = (float)srcimg.cols / neww;
int n = 0, q = 0, nout = this->classes.size() + 5, row_ind = 0;
float* pdata = (float*)outs[0].data;
for (n = 0; n < 3; n++) ///<2F>߶<EFBFBD>
{
int num_grid_x = (int)(this->inpWidth / this->stride[n]);
int num_grid_y = (int)(this->inpHeight / this->stride[n]);
for (q = 0; q < 3; q++) ///anchor<6F><72>
{
const float anchor_w = this->anchors[n][q * 2];
const float anchor_h = this->anchors[n][q * 2 + 1];
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
const float box_score = pdata[4];
if (box_score > this->objThreshold)
{
Mat scores = outs[0].row(row_ind).colRange(5, outs[0].cols);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
if (max_class_socre > this->confThreshold)
{
float cx = (pdata[0] * 2.f - 0.5f + j) * this->stride[n]; ///cx
float cy = (pdata[1] * 2.f - 0.5f + i) * this->stride[n]; ///cy
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
int left = (cx - 0.5*w - padw)*ratiow;
int top = (cy - 0.5*h - padh)*ratioh;
classIds.push_back(classIdPoint.x);
confidences.push_back(max_class_socre * box_score);
boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
}
}
row_ind++;
pdata += nout;
}
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
this->drawPred(classIds[idx], confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, outimg);
}
return outimg;
}
int main()
{
YOLO yolo_model("yolop.onnx", 0.25, 0.45, 0.5);
string imgpath = "images/0ace96c3-48481887.jpg";
Mat srcimg = imread(imgpath);
Mat outimg = yolo_model.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, outimg);
waitKey(0);
destroyAllWindows();
}

158
main.py Normal file
View File

@@ -0,0 +1,158 @@
import cv2
import argparse
import numpy as np
class yolop():
def __init__(self, confThreshold=0.25, nmsThreshold=0.5, objThreshold=0.45):
with open('bdd100k.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n') ###这个是在bdd100k数据集上训练的模型做opencv部署的如果你在自己的数据集上训练出的模型做opencv部署那么需要修改self.classes
num_classes = len(self.classes)
anchors = [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]]
self.nl = len(anchors)
self.na = len(anchors[0]) // 2
self.no = num_classes + 5
self.stride = np.array([8., 16., 32.])
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
self.inpWidth = 640
self.inpHeight = 640
self.generate_grid()
self.net = cv2.dnn.readNet('yolop.onnx')
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
self.objThreshold = objThreshold
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
self.keep_ratio = True
def generate_grid(self):
self.grid = [np.zeros(1)] * self.nl
self.length = []
self.areas = []
for i in range(self.nl):
h, w = int(self.inpHeight/self.stride[i]), int(self.inpWidth/self.stride[i])
self.length.append(int(self.na * h * w))
self.areas.append(h*w)
if self.grid[i].shape[2:4] != (h,w):
self.grid[i] = self._make_grid(w, h)
def _make_grid(self, nx=20, ny=20):
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
def postprocess(self, frame, outs, newh, neww, padh, padw):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
ratioh, ratiow = frameHeight / newh, frameWidth / neww
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for detection in outs:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > self.confThreshold and detection[4] > self.objThreshold:
center_x = int((detection[0]-padw) * ratiow)
center_y = int((detection[1]-padh) * ratioh)
width = int(detection[2] * ratiow)
height = int(detection[3] * ratioh)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence) * detection[4])
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
return frame
def drawPred(self, frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
label = '%.2f' % conf
label = '%s:%s' % (self.classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=1)
return frame
def resize_image(self, srcimg):
padh, padw, newh, neww = 0, 0, self.inpHeight, self.inpWidth
if self.keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padw = int((self.inpWidth - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT,
value=0) # add border
else:
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
padh = int((self.inpHeight - newh) * 0.5)
img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT, value=0)
else:
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
return img, newh, neww, padh, padw
def _normalize(self, img): ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
img = img.astype(np.float32) / 255.0
img = (img - self.mean) / self.std
return img
def detect(self, srcimg):
img, newh, neww, padh, padw = self.resize_image(srcimg)
img = self._normalize(img)
blob = cv2.dnn.blobFromImage(img)
# Sets the input to the network
self.net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# inference output
outimg = srcimg.copy()
drive_area_mask = outs[1][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(drive_area_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [0, 255, 0]
lane_line_mask = outs[2][:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(lane_line_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
outimg[seg_id == 1] = [255, 0, 0]
det_out = outs[0]
row_ind = 0
for i in range(self.nl):
det_out[row_ind:row_ind+self.length[i], 0:2] = (det_out[row_ind:row_ind+self.length[i], 0:2] * 2. - 0.5 + np.tile(self.grid[i],(self.na, 1))) * int(self.stride[i])
det_out[row_ind:row_ind+self.length[i], 2:4] = (det_out[row_ind:row_ind+self.length[i], 2:4] * 2) ** 2 * np.repeat(self.anchor_grid[i], self.areas[i], axis=0)
row_ind += self.length[i]
outimg = self.postprocess(outimg, det_out, newh, neww, padh, padw)
return outimg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgpath", type=str, default='images/0ace96c3-48481887.jpg', help="image path")
parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.45, type=float, help='nms iou thresh')
parser.add_argument('--objThreshold', default=0.5, type=float, help='object confidence')
args = parser.parse_args()
yolonet = yolop(confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, objThreshold=args.objThreshold)
srcimg = cv2.imread(args.imgpath)
outimg = yolonet.detect(srcimg)
winName = 'Deep learning object detection in OpenCV'
cv2.namedWindow(winName, 0)
cv2.imshow(winName, outimg)
cv2.waitKey(0)
cv2.destroyAllWindows()