Add files via upload

This commit is contained in:
hpc203
2023-07-28 22:48:39 +08:00
committed by GitHub
commit ff8b593f06
4 changed files with 22154 additions and 0 deletions

BIN
desk.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 283 KiB

21843
imagenet_21k_class_names.txt Normal file

File diff suppressed because it is too large Load Diff

193
main.cpp Normal file
View File

@@ -0,0 +1,193 @@
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <fstream>
#include <numeric>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
//#include <cuda_provider_factory.h> ///nvidia-cuda<64><61><EFBFBD><EFBFBD>
#include <onnxruntime_cxx_api.h>
using namespace cv;
using namespace std;
using namespace Ort;
typedef struct BoxInfo
{
int xmin;
int ymin;
int xmax;
int ymax;
float score;
string name;
} BoxInfo;
class Detic
{
public:
Detic(string modelpath);
vector<BoxInfo> detect(Mat cv_image);
private:
void preprocess(Mat srcimg);
vector<float> input_image_;
int inpWidth;
int inpHeight;
vector<string> class_names;
const int max_size = 800;
//<2F><EFBFBD><E6B4A2>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD>õĿ<C3B5>ִ<EFBFBD><D6B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "Head Pose Estimation");
Ort::Session *ort_session = nullptr;
SessionOptions sessionOptions = SessionOptions();
vector<char*> input_names;
vector<char*> output_names;
vector<vector<int64_t>> input_node_dims; // >=1 outputs
vector<vector<int64_t>> output_node_dims; // >=1 outputs
};
Detic::Detic(string model_path)
{
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); ///nvidia-cuda<64><61><EFBFBD><EFBFBD>
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
std::wstring widestr = std::wstring(model_path.begin(), model_path.end()); ///<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>windowsϵͳ<CFB5><CDB3><EFBFBD><EFBFBD>ôд
ort_session = new Session(env, widestr.c_str(), sessionOptions); ///<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>windowsϵͳ<CFB5><CDB3><EFBFBD><EFBFBD>ôд
///ort_session = new Session(env, model_path.c_str(), sessionOptions); ///<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>linuxϵͳ<CFB5><CDB3><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ôд
size_t numInputNodes = ort_session->GetInputCount();
size_t numOutputNodes = ort_session->GetOutputCount();
AllocatorWithDefaultOptions allocator;
for (int i = 0; i < numInputNodes; i++)
{
input_names.push_back(ort_session->GetInputName(i, allocator));
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto input_dims = input_tensor_info.GetShape();
input_node_dims.push_back(input_dims);
}
for (int i = 0; i < numOutputNodes; i++)
{
output_names.push_back(ort_session->GetOutputName(i, allocator));
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
ifstream ifs("imagenet_21k_class_names.txt");
string line;
while (getline(ifs, line))
{
this->class_names.push_back(line); ///<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>RGBֵ
}
}
void Detic::preprocess(Mat srcimg)
{
Mat dstimg;
cvtColor(srcimg, dstimg, COLOR_BGR2RGB);
int im_h = srcimg.rows;
int im_w = srcimg.cols;
float oh, ow, scale;
if (im_h < im_w)
{
scale = (float)max_size / (float)im_h;
oh = max_size;
ow = scale * (float)im_w;
}
else
{
scale = (float)max_size / (float)im_h;
oh = scale * (float)im_h;
ow = max_size;
}
float max_hw = std::max(oh, ow);
if (max_hw > max_size)
{
scale = (float)max_size / max_hw;
oh *= scale;
ow *= scale;
}
resize(dstimg, dstimg, Size(int(ow + 0.5), int(oh + 0.5)), INTER_LINEAR);
this->inpHeight = dstimg.rows;
this->inpWidth = dstimg.cols;
this->input_image_.resize(this->inpWidth * this->inpHeight * dstimg.channels());
int k = 0;
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < this->inpHeight; i++)
{
for (int j = 0; j < this->inpWidth; j++)
{
float pix = dstimg.ptr<uchar>(i)[j * 3 + c];
this->input_image_[k] = pix;
k++;
}
}
}
}
vector<BoxInfo> Detic::detect(Mat srcimg)
{
int im_h = srcimg.rows;
int im_w = srcimg.cols;
this->preprocess(srcimg);
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size());
const float *pred_boxes = ort_outputs[0].GetTensorMutableData<float>();
const float *scores = ort_outputs[1].GetTensorMutableData<float>();
const int *pred_classes = ort_outputs[2].GetTensorMutableData<int>();
//const float *pred_masks = ort_outputs[3].GetTensorMutableData<float>();
int num_box = ort_outputs[0].GetTensorTypeAndShapeInfo().GetShape()[0];
const float scale_x = float(im_w) / float(inpWidth);
const float scale_y = float(im_h) / float(inpHeight);
vector<BoxInfo> preds;
for (int i = 0; i < num_box; i++)
{
float xmin = pred_boxes[i * 4] * scale_x;
float ymin = pred_boxes[i * 4 + 1] * scale_y;
float xmax = pred_boxes[i * 4 + 2] * scale_x;
float ymax = pred_boxes[i * 4 + 3] * scale_y;
xmin = std::min(std::max(xmin, 0.f), float(im_w));
ymin = std::min(std::max(ymin, 0.f), float(im_h));
xmax = std::min(std::max(xmax, 0.f), float(im_w));
ymax = std::min(std::max(ymax, 0.f), float(im_h));
const float threshold = 0;
const float width = xmax - xmin;
const float height = ymax - ymin;
if (width > threshold && height > threshold)
{
preds.push_back({ int(xmin), int(ymin), int(xmax), int(ymax), scores[i], class_names[pred_classes[i]] });
}
}
return preds;
}
int main()
{
Detic mynet("weights/Detic_C2_R50_640_4x_in21k.onnx");
string imgpath = "desk.jpg";
Mat srcimg = imread(imgpath);
vector<BoxInfo> preds = mynet.detect(srcimg);
for (size_t i = 0; i < preds.size(); ++i)
{
rectangle(srcimg, Point(preds[i].xmin, preds[i].ymin), Point(preds[i].xmax, preds[i].ymax), Scalar(0, 0, 255), 2);
string label = format("%.2f", preds[i].score);
label = preds[i].name + " :" + label;
putText(srcimg, label, Point(preds[i].xmin, preds[i].ymin - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1);
}
//imwrite("result.jpg", srcimg);
static const string kWinName = "Deep learning object detection in ONNXRuntime";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}

118
main.py Normal file
View File

@@ -0,0 +1,118 @@
import argparse
import cv2
import numpy as np
import onnxruntime as ort
class Detic():
def __init__(self, modelpath, detection_width=800, confThreshold=0.8):
# net = cv2.dnn.readNet(modelpath)
so = ort.SessionOptions()
so.log_severity_level = 3
self.session = ort.InferenceSession(modelpath, so)
model_inputs = self.session.get_inputs()
self.input_name = model_inputs[0].name
self.max_size = detection_width
self.confThreshold = confThreshold
self.class_names = list(map(lambda x: x.strip(), open('imagenet_21k_class_names.txt').readlines()))
self.assigned_colors = np.random.randint(0,high=256, size=(len(self.class_names), 3)).tolist()
def preprocess(self, srcimg):
im_h, im_w, _ = srcimg.shape
dstimg = cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB)
if im_h < im_w:
scale = self.max_size / im_h
oh, ow = self.max_size, scale * im_w
else:
scale = self.max_size / im_w
oh, ow = scale * im_h, self.max_size
max_hw = max(oh, ow)
if max_hw > self.max_size:
scale = self.max_size / max_hw
oh *= scale
ow *= scale
ow = int(ow + 0.5)
oh = int(oh + 0.5)
dstimg = cv2.resize(dstimg, (ow, oh))
return dstimg
def post_processing(self, pred_boxes, scores, pred_classes, pred_masks, im_hw, pred_hw):
scale_x, scale_y = (im_hw[1] / pred_hw[1], im_hw[0] / pred_hw[0])
pred_boxes[:, 0::2] *= scale_x
pred_boxes[:, 1::2] *= scale_y
pred_boxes[:, [0, 2]] = np.clip(pred_boxes[:, [0, 2]], 0, im_hw[1])
pred_boxes[:, [1, 3]] = np.clip(pred_boxes[:, [1, 3]], 0, im_hw[0])
threshold = 0
widths = pred_boxes[:, 2] - pred_boxes[:, 0]
heights = pred_boxes[:, 3] - pred_boxes[:, 1]
keep = (widths > threshold) & (heights > threshold)
pred_boxes = pred_boxes[keep]
scores = scores[keep]
pred_classes = pred_classes[keep]
pred_masks = pred_masks[keep]
# mask_threshold = 0.5
# pred_masks = paste_masks_in_image(
# pred_masks[:, 0, :, :], pred_boxes,
# (im_hw[0], im_hw[1]), mask_threshold
# )
pred = {
'pred_boxes': pred_boxes,
'scores': scores,
'pred_classes': pred_classes,
'pred_masks': pred_masks,
}
return pred
def draw_predictions(self, img, predictions):
height, width = img.shape[:2]
default_font_size = int(max(np.sqrt(height * width) // 90, 10))
boxes = predictions["pred_boxes"].astype(np.int64)
scores = predictions["scores"]
classes_id = predictions["pred_classes"].tolist()
# masks = predictions["pred_masks"].astype(np.uint8)
num_instances = len(boxes)
print('detect', num_instances, 'instances')
for i in range(num_instances):
x0, y0, x1, y1 = boxes[i]
color = self.assigned_colors[classes_id[i]]
cv2.rectangle(img, (x0, y0), (x1, y1), color=color,thickness=default_font_size // 4)
text = "{} {:.0f}%".format(self.class_names[classes_id[i]], round(scores[i],2) * 100)
cv2.putText(img, text, (x0, y0 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=1, lineType=cv2.LINE_AA)
return img
def detect(self, srcimg):
im_h, im_w = srcimg.shape[:2]
dstimg = self.preprocess(srcimg)
pred_hw = dstimg.shape[:2]
input_image = np.expand_dims(dstimg.transpose(2, 0, 1), axis=0).astype(np.float32)
# Inference
pred_boxes, scores, pred_classes, pred_masks = self.session.run(None, {self.input_name: input_image})
preds = self.post_processing(pred_boxes, scores, pred_classes, pred_masks, (im_h, im_w), pred_hw)
return preds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--imgpath", type=str, default='desk.jpg', help="image path")
parser.add_argument("--confThreshold", default=0.5, type=float, help='class confidence')
parser.add_argument("--modelpath", type=str, default='weights/Detic_C2_R50_640_4x_in21k.onnx', help="onnxmodel path")
args = parser.parse_args()
mynet = Detic(args.modelpath, confThreshold=args.confThreshold)
srcimg = cv2.imread(args.imgpath)
preds = mynet.detect(srcimg)
srcimg = mynet.draw_predictions(srcimg, preds)
# cv2.imwrite('result.jpg', srcimg)
winName = 'Deep learning Detic in ONNXRuntime'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
cv2.imshow(winName, srcimg)
cv2.waitKey(0)
cv2.destroyAllWindows()