mirror of
https://github.com/esimov/pigo.git
synced 2025-10-09 01:50:08 +08:00
205 lines
5.1 KiB
Go
205 lines
5.1 KiB
Go
package main
|
|
|
|
import "C"
|
|
|
|
import (
|
|
"image"
|
|
"image/color"
|
|
"io/ioutil"
|
|
"log"
|
|
"runtime"
|
|
"unsafe"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
"github.com/esimov/triangle"
|
|
)
|
|
|
|
var (
|
|
cascade []byte
|
|
err error
|
|
p *pigo.Pigo
|
|
classifier *pigo.Pigo
|
|
)
|
|
|
|
type SubImager interface {
|
|
SubImage(r image.Rectangle) image.Image
|
|
}
|
|
|
|
type pixs struct {
|
|
rows, cols int
|
|
}
|
|
|
|
func main() {}
|
|
|
|
//export FindFaces
|
|
func FindFaces(pixels []uint8) uintptr {
|
|
px := &pixs{
|
|
rows: 480,
|
|
cols: 640,
|
|
}
|
|
|
|
proc := &triangle.Processor{
|
|
BlurRadius: 1,
|
|
SobelThreshold: 2,
|
|
PointsThreshold: 2,
|
|
MaxPoints: 200,
|
|
Wireframe: 0,
|
|
Noise: 0,
|
|
StrokeWidth: 1,
|
|
IsSolid: true,
|
|
Grayscale: false,
|
|
OutputToSVG: false,
|
|
OutputInWeb: false,
|
|
}
|
|
tri := &triangle.Image{*proc}
|
|
|
|
pointCh := make(chan uintptr)
|
|
go func() {
|
|
img := px.pixToImage(pixels)
|
|
grayscale := pigo.RgbToGrayscale(img.(*image.NRGBA))
|
|
|
|
dets := px.clusterDetection(grayscale)
|
|
tFaces := make([][]int, len(dets))
|
|
totalPixDim := 0
|
|
|
|
for i := 0; i < len(dets); i++ {
|
|
if dets[i].Q >= 5.0 {
|
|
rect := image.Rect(
|
|
dets[i].Col-dets[i].Scale/2,
|
|
dets[i].Row-dets[i].Scale/2,
|
|
dets[i].Col+dets[i].Scale/2,
|
|
dets[i].Row+dets[i].Scale/2,
|
|
)
|
|
subImg := img.(SubImager).SubImage(rect)
|
|
bounds := subImg.Bounds()
|
|
|
|
if bounds.Dx() > 1 && bounds.Dy() > 1 {
|
|
res, _, _, err := tri.Draw(subImg, nil, func() {})
|
|
if err != nil {
|
|
log.Fatal(err.Error())
|
|
}
|
|
triPix := px.imgToPix(res)
|
|
tFaces[i] = append(tFaces[i], triPix...)
|
|
|
|
// Prepend the box size and the top left coordinates of the detected faces to the delaunay triangles.
|
|
tFaces[i] = append([]int{
|
|
len(triPix),
|
|
dets[i].Col - dets[i].Scale/2,
|
|
dets[i].Row - dets[i].Scale/2,
|
|
dets[i].Scale,
|
|
}, tFaces[i]...)
|
|
|
|
totalPixDim += len(triPix)
|
|
}
|
|
}
|
|
}
|
|
result := make([]int, 0, len(dets))
|
|
|
|
// Convert the multidimensional slice containing the triangulated images to 1d slice.
|
|
convTri := make([]int, 0, len(result)*totalPixDim)
|
|
for _, face := range tFaces {
|
|
convTri = append(convTri, face...)
|
|
}
|
|
// Include as a first slice element the number of detected faces.
|
|
// We need to transfer this value in order to define the Python array buffer length.
|
|
result = append([]int{len(dets)}, result...)
|
|
|
|
// Append the generated triangle slices to the detected faces array.
|
|
result = append(result, convTri...)
|
|
|
|
// Convert the slice into an array pointer.
|
|
s := *(*[]uint8)(unsafe.Pointer(&result))
|
|
p := uintptr(unsafe.Pointer(&s[0]))
|
|
|
|
// Ensure `result` is not freed up by GC prematurely.
|
|
runtime.KeepAlive(result)
|
|
|
|
pointCh <- p
|
|
}()
|
|
// return the pointer address
|
|
return <-pointCh
|
|
}
|
|
|
|
// clusterDetection runs Pigo face detector core methods
|
|
// and returns a cluster with the detected faces coordinates.
|
|
func (px pixs) clusterDetection(pixels []uint8) []pigo.Detection {
|
|
cParams := pigo.CascadeParams{
|
|
MinSize: 100,
|
|
MaxSize: 600,
|
|
ShiftFactor: 0.15,
|
|
ScaleFactor: 1.1,
|
|
ImageParams: pigo.ImageParams{
|
|
Pixels: pixels,
|
|
Rows: px.rows,
|
|
Cols: px.cols,
|
|
Dim: px.cols,
|
|
},
|
|
}
|
|
|
|
if len(cascade) == 0 {
|
|
cascade, err = ioutil.ReadFile("../../cascade/facefinder")
|
|
if err != nil {
|
|
log.Fatalf("Error reading the cascade file: %v", err)
|
|
}
|
|
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
classifier, err = p.Unpack(cascade)
|
|
if err != nil {
|
|
log.Fatalf("Error reading the cascade file: %s", err)
|
|
}
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := classifier.RunCascade(cParams, 0.0)
|
|
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = classifier.ClusterDetections(dets, 0)
|
|
|
|
return dets
|
|
}
|
|
|
|
// pixToImage converts the pixel array to an image.
|
|
func (px pixs) pixToImage(pixels []uint8) image.Image {
|
|
width, height := px.cols, px.rows
|
|
img := image.NewNRGBA(image.Rect(0, 0, width, height))
|
|
c := color.NRGBA{
|
|
R: uint8(0),
|
|
G: uint8(0),
|
|
B: uint8(0),
|
|
A: uint8(255),
|
|
}
|
|
|
|
for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ {
|
|
for x := img.Bounds().Min.X; x < img.Bounds().Max.X*3; x += 3 {
|
|
c.R = uint8(pixels[x+y*width*3])
|
|
c.G = uint8(pixels[x+y*width*3+1])
|
|
c.B = uint8(pixels[x+y*width*3+2])
|
|
|
|
img.SetNRGBA(int(x/3), y, c)
|
|
}
|
|
}
|
|
return img
|
|
}
|
|
|
|
// imgToPix converts the image to a pixel array.
|
|
func (px pixs) imgToPix(img image.Image) []int {
|
|
bounds := img.Bounds()
|
|
pixels := make([]int, 0, bounds.Max.X*bounds.Max.Y*3)
|
|
rs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
|
|
gs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
|
|
bs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
|
|
|
|
for i := bounds.Min.X; i < bounds.Max.X; i++ {
|
|
for j := bounds.Min.Y; j < bounds.Max.Y; j++ {
|
|
r, g, b, _ := img.At(i, j).RGBA()
|
|
rs = append(rs, int(r>>8))
|
|
gs = append(gs, int(g>>8))
|
|
bs = append(bs, int(b>>8))
|
|
}
|
|
}
|
|
pixels = append(append(append(append(pixels, rs...), gs...), bs...))
|
|
return pixels
|
|
}
|