Files
pigo/examples/delaunay/pigo.go
2019-08-09 15:37:41 +03:00

205 lines
5.1 KiB
Go

package main
import "C"
import (
"image"
"image/color"
"io/ioutil"
"log"
"runtime"
"unsafe"
pigo "github.com/esimov/pigo/core"
"github.com/esimov/triangle"
)
var (
cascade []byte
err error
p *pigo.Pigo
classifier *pigo.Pigo
)
type SubImager interface {
SubImage(r image.Rectangle) image.Image
}
type pixs struct {
rows, cols int
}
func main() {}
//export FindFaces
func FindFaces(pixels []uint8) uintptr {
px := &pixs{
rows: 480,
cols: 640,
}
proc := &triangle.Processor{
BlurRadius: 1,
SobelThreshold: 2,
PointsThreshold: 2,
MaxPoints: 200,
Wireframe: 0,
Noise: 0,
StrokeWidth: 1,
IsSolid: true,
Grayscale: false,
OutputToSVG: false,
OutputInWeb: false,
}
tri := &triangle.Image{*proc}
pointCh := make(chan uintptr)
go func() {
img := px.pixToImage(pixels)
grayscale := pigo.RgbToGrayscale(img.(*image.NRGBA))
dets := px.clusterDetection(grayscale)
tFaces := make([][]int, len(dets))
totalPixDim := 0
for i := 0; i < len(dets); i++ {
if dets[i].Q >= 5.0 {
rect := image.Rect(
dets[i].Col-dets[i].Scale/2,
dets[i].Row-dets[i].Scale/2,
dets[i].Col+dets[i].Scale/2,
dets[i].Row+dets[i].Scale/2,
)
subImg := img.(SubImager).SubImage(rect)
bounds := subImg.Bounds()
if bounds.Dx() > 1 && bounds.Dy() > 1 {
res, _, _, err := tri.Draw(subImg, nil, func() {})
if err != nil {
log.Fatal(err.Error())
}
triPix := px.imgToPix(res)
tFaces[i] = append(tFaces[i], triPix...)
// Prepend the box size and the top left coordinates of the detected faces to the delaunay triangles.
tFaces[i] = append([]int{
len(triPix),
dets[i].Col - dets[i].Scale/2,
dets[i].Row - dets[i].Scale/2,
dets[i].Scale,
}, tFaces[i]...)
totalPixDim += len(triPix)
}
}
}
result := make([]int, 0, len(dets))
// Convert the multidimensional slice containing the triangulated images to 1d slice.
convTri := make([]int, 0, len(result)*totalPixDim)
for _, face := range tFaces {
convTri = append(convTri, face...)
}
// Include as a first slice element the number of detected faces.
// We need to transfer this value in order to define the Python array buffer length.
result = append([]int{len(dets)}, result...)
// Append the generated triangle slices to the detected faces array.
result = append(result, convTri...)
// Convert the slice into an array pointer.
s := *(*[]uint8)(unsafe.Pointer(&result))
p := uintptr(unsafe.Pointer(&s[0]))
// Ensure `result` is not freed up by GC prematurely.
runtime.KeepAlive(result)
pointCh <- p
}()
// return the pointer address
return <-pointCh
}
// clusterDetection runs Pigo face detector core methods
// and returns a cluster with the detected faces coordinates.
func (px pixs) clusterDetection(pixels []uint8) []pigo.Detection {
cParams := pigo.CascadeParams{
MinSize: 100,
MaxSize: 600,
ShiftFactor: 0.15,
ScaleFactor: 1.1,
ImageParams: pigo.ImageParams{
Pixels: pixels,
Rows: px.rows,
Cols: px.cols,
Dim: px.cols,
},
}
if len(cascade) == 0 {
cascade, err = ioutil.ReadFile("../../cascade/facefinder")
if err != nil {
log.Fatalf("Error reading the cascade file: %v", err)
}
// Unpack the binary file. This will return the number of cascade trees,
// the tree depth, the threshold and the prediction from tree's leaf nodes.
classifier, err = p.Unpack(cascade)
if err != nil {
log.Fatalf("Error reading the cascade file: %s", err)
}
}
// Run the classifier over the obtained leaf nodes and return the detection results.
// The result contains quadruplets representing the row, column, scale and detection score.
dets := classifier.RunCascade(cParams, 0.0)
// Calculate the intersection over union (IoU) of two clusters.
dets = classifier.ClusterDetections(dets, 0)
return dets
}
// pixToImage converts the pixel array to an image.
func (px pixs) pixToImage(pixels []uint8) image.Image {
width, height := px.cols, px.rows
img := image.NewNRGBA(image.Rect(0, 0, width, height))
c := color.NRGBA{
R: uint8(0),
G: uint8(0),
B: uint8(0),
A: uint8(255),
}
for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ {
for x := img.Bounds().Min.X; x < img.Bounds().Max.X*3; x += 3 {
c.R = uint8(pixels[x+y*width*3])
c.G = uint8(pixels[x+y*width*3+1])
c.B = uint8(pixels[x+y*width*3+2])
img.SetNRGBA(int(x/3), y, c)
}
}
return img
}
// imgToPix converts the image to a pixel array.
func (px pixs) imgToPix(img image.Image) []int {
bounds := img.Bounds()
pixels := make([]int, 0, bounds.Max.X*bounds.Max.Y*3)
rs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
gs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
bs := make([]int, 0, bounds.Max.X*bounds.Max.Y)
for i := bounds.Min.X; i < bounds.Max.X; i++ {
for j := bounds.Min.Y; j < bounds.Max.Y; j++ {
r, g, b, _ := img.At(i, j).RGBA()
rs = append(rs, int(r>>8))
gs = append(gs, int(g>>8))
bs = append(bs, int(b>>8))
}
}
pixels = append(append(append(append(pixels, rs...), gs...), bs...))
return pixels
}