package main import "C" import ( "image" "image/color" "io/ioutil" "log" "runtime" "unsafe" pigo "github.com/esimov/pigo/core" "github.com/esimov/triangle" ) var ( cascade []byte err error p *pigo.Pigo classifier *pigo.Pigo ) type SubImager interface { SubImage(r image.Rectangle) image.Image } type pixs struct { rows, cols int } func main() {} //export FindFaces func FindFaces(pixels []uint8) uintptr { px := &pixs{ rows: 480, cols: 640, } proc := &triangle.Processor{ BlurRadius: 1, SobelThreshold: 2, PointsThreshold: 2, MaxPoints: 200, Wireframe: 0, Noise: 0, StrokeWidth: 1, IsSolid: true, Grayscale: false, OutputToSVG: false, OutputInWeb: false, } tri := &triangle.Image{*proc} pointCh := make(chan uintptr) go func() { img := px.pixToImage(pixels) grayscale := pigo.RgbToGrayscale(img.(*image.NRGBA)) dets := px.clusterDetection(grayscale) tFaces := make([][]int, len(dets)) totalPixDim := 0 for i := 0; i < len(dets); i++ { if dets[i].Q >= 5.0 { rect := image.Rect( dets[i].Col-dets[i].Scale/2, dets[i].Row-dets[i].Scale/2, dets[i].Col+dets[i].Scale/2, dets[i].Row+dets[i].Scale/2, ) subImg := img.(SubImager).SubImage(rect) bounds := subImg.Bounds() if bounds.Dx() > 1 && bounds.Dy() > 1 { res, _, _, err := tri.Draw(subImg, nil, func() {}) if err != nil { log.Fatal(err.Error()) } triPix := px.imgToPix(res) tFaces[i] = append(tFaces[i], triPix...) // Prepend the box size and the top left coordinates of the detected faces to the delaunay triangles. tFaces[i] = append([]int{ len(triPix), dets[i].Col - dets[i].Scale/2, dets[i].Row - dets[i].Scale/2, dets[i].Scale, }, tFaces[i]...) totalPixDim += len(triPix) } } } result := make([]int, 0, len(dets)) // Convert the multidimensional slice containing the triangulated images to 1d slice. convTri := make([]int, 0, len(result)*totalPixDim) for _, face := range tFaces { convTri = append(convTri, face...) } // Include as a first slice element the number of detected faces. // We need to transfer this value in order to define the Python array buffer length. result = append([]int{len(dets)}, result...) // Append the generated triangle slices to the detected faces array. result = append(result, convTri...) // Convert the slice into an array pointer. s := *(*[]uint8)(unsafe.Pointer(&result)) p := uintptr(unsafe.Pointer(&s[0])) // Ensure `result` is not freed up by GC prematurely. runtime.KeepAlive(result) pointCh <- p }() // return the pointer address return <-pointCh } // clusterDetection runs Pigo face detector core methods // and returns a cluster with the detected faces coordinates. func (px pixs) clusterDetection(pixels []uint8) []pigo.Detection { cParams := pigo.CascadeParams{ MinSize: 100, MaxSize: 600, ShiftFactor: 0.15, ScaleFactor: 1.1, ImageParams: pigo.ImageParams{ Pixels: pixels, Rows: px.rows, Cols: px.cols, Dim: px.cols, }, } if len(cascade) == 0 { cascade, err = ioutil.ReadFile("../../cascade/facefinder") if err != nil { log.Fatalf("Error reading the cascade file: %v", err) } // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err = p.Unpack(cascade) if err != nil { log.Fatalf("Error reading the cascade file: %s", err) } } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets := classifier.RunCascade(cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = classifier.ClusterDetections(dets, 0) return dets } // pixToImage converts the pixel array to an image. func (px pixs) pixToImage(pixels []uint8) image.Image { width, height := px.cols, px.rows img := image.NewNRGBA(image.Rect(0, 0, width, height)) c := color.NRGBA{ R: uint8(0), G: uint8(0), B: uint8(0), A: uint8(255), } for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ { for x := img.Bounds().Min.X; x < img.Bounds().Max.X*3; x += 3 { c.R = uint8(pixels[x+y*width*3]) c.G = uint8(pixels[x+y*width*3+1]) c.B = uint8(pixels[x+y*width*3+2]) img.SetNRGBA(int(x/3), y, c) } } return img } // imgToPix converts the image to a pixel array. func (px pixs) imgToPix(img image.Image) []int { bounds := img.Bounds() pixels := make([]int, 0, bounds.Max.X*bounds.Max.Y*3) rs := make([]int, 0, bounds.Max.X*bounds.Max.Y) gs := make([]int, 0, bounds.Max.X*bounds.Max.Y) bs := make([]int, 0, bounds.Max.X*bounds.Max.Y) for i := bounds.Min.X; i < bounds.Max.X; i++ { for j := bounds.Min.Y; j < bounds.Max.Y; j++ { r, g, b, _ := img.At(i, j).RGBA() rs = append(rs, int(r>>8)) gs = append(gs, int(g>>8)) bs = append(bs, int(b>>8)) } } pixels = append(append(append(append(pixels, rs...), gs...), bs...)) return pixels }