mirror of
https://github.com/esimov/pigo.git
synced 2025-09-27 04:26:32 +08:00
191 lines
5.4 KiB
Go
191 lines
5.4 KiB
Go
package detector
|
|
|
|
import (
|
|
"errors"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
// FlpCascade holds the binary representation of the facial landmark points cascade files
|
|
type FlpCascade struct {
|
|
*pigo.PuplocCascade
|
|
error
|
|
}
|
|
|
|
const perturb = 63
|
|
|
|
var (
|
|
cascade []byte
|
|
puplocCascade []byte
|
|
faceClassifier *pigo.Pigo
|
|
puplocClassifier *pigo.PuplocCascade
|
|
flpcs map[string][]*FlpCascade
|
|
imgParams *pigo.ImageParams
|
|
err error
|
|
)
|
|
|
|
var (
|
|
eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"}
|
|
mouthCascade = []string{"lp93", "lp84", "lp82", "lp81"}
|
|
)
|
|
|
|
// UnpackCascades unpack all of used cascade files.
|
|
func (d *Detector) UnpackCascades() error {
|
|
p := pigo.NewPigo()
|
|
|
|
cascade, err = d.ParseCascade("/cascade/facefinder")
|
|
if err != nil {
|
|
return errors.New("error reading the facefinder cascade file")
|
|
}
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
faceClassifier, err = p.Unpack(cascade)
|
|
if err != nil {
|
|
return errors.New("error unpacking the facefinder cascade file")
|
|
}
|
|
|
|
plc := pigo.NewPuplocCascade()
|
|
|
|
puplocCascade, err = d.ParseCascade("/cascade/puploc")
|
|
if err != nil {
|
|
return errors.New("error reading the puploc cascade file")
|
|
}
|
|
|
|
puplocClassifier, err = plc.UnpackCascade(puplocCascade)
|
|
if err != nil {
|
|
return errors.New("error unpacking the puploc cascade file")
|
|
}
|
|
|
|
flpcs, err = d.parseFlpCascades("/cascade/lps/")
|
|
if err != nil {
|
|
return errors.New("error unpacking the facial landmark points detection cascades")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DetectFaces runs the cluster detection over the webcam frame
|
|
// received as a pixel array and returns the detected faces.
|
|
func (d *Detector) DetectFaces(pixels []uint8, width, height int) [][]int {
|
|
results := d.clusterDetection(pixels, width, height)
|
|
dets := make([][]int, len(results))
|
|
|
|
for i := 0; i < len(results); i++ {
|
|
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q))
|
|
}
|
|
return dets
|
|
}
|
|
|
|
// DetectLeftPupil detects the left pupil
|
|
func (d *Detector) DetectLeftPupil(results []int) *pigo.Puploc {
|
|
puploc := &pigo.Puploc{
|
|
Row: results[0] - int(0.085*float32(results[2])),
|
|
Col: results[1] - int(0.185*float32(results[2])),
|
|
Scale: float32(results[2]) * 0.4,
|
|
Perturbs: perturb,
|
|
}
|
|
leftEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
if leftEye.Row > 0 && leftEye.Col > 0 {
|
|
return leftEye
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DetectRightPupil detects the right pupil
|
|
func (d *Detector) DetectRightPupil(results []int) *pigo.Puploc {
|
|
puploc := &pigo.Puploc{
|
|
Row: results[0] - int(0.085*float32(results[2])),
|
|
Col: results[1] + int(0.185*float32(results[2])),
|
|
Scale: float32(results[2]) * 0.4,
|
|
Perturbs: perturb,
|
|
}
|
|
rightEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
if rightEye.Row > 0 && rightEye.Col > 0 {
|
|
return rightEye
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DetectLandmarkPoints detects the landmark points
|
|
func (d *Detector) DetectLandmarkPoints(leftEye, rightEye *pigo.Puploc) [][]int {
|
|
var (
|
|
det = make([][]int, 15)
|
|
idx int
|
|
)
|
|
|
|
for _, eye := range eyeCascades {
|
|
for _, flpc := range flpcs[eye] {
|
|
flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale))
|
|
}
|
|
idx++
|
|
|
|
flp = flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale))
|
|
}
|
|
idx++
|
|
}
|
|
}
|
|
|
|
for _, mouth := range mouthCascade {
|
|
for _, flpc := range flpcs[mouth] {
|
|
flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale))
|
|
}
|
|
idx++
|
|
}
|
|
}
|
|
flp := flpcs["lp84"][0].GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale))
|
|
}
|
|
return det
|
|
}
|
|
|
|
// clusterDetection runs Pigo face detector core methods
|
|
// and returns a cluster with the detected faces coordinates.
|
|
func (d *Detector) clusterDetection(pixels []uint8, width, height int) []pigo.Detection {
|
|
imgParams = &pigo.ImageParams{
|
|
Pixels: pixels,
|
|
Rows: width,
|
|
Cols: height,
|
|
Dim: height,
|
|
}
|
|
cParams := pigo.CascadeParams{
|
|
MinSize: 200,
|
|
MaxSize: 480,
|
|
ShiftFactor: 0.1,
|
|
ScaleFactor: 1.1,
|
|
ImageParams: *imgParams,
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := faceClassifier.RunCascade(cParams, 0.0)
|
|
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = faceClassifier.ClusterDetections(dets, 0.1)
|
|
|
|
return dets
|
|
}
|
|
|
|
// parseFlpCascades reads the facial landmark points cascades from the provided url.
|
|
func (d *Detector) parseFlpCascades(path string) (map[string][]*FlpCascade, error) {
|
|
cascades := append(eyeCascades, mouthCascade...)
|
|
flpcs := make(map[string][]*FlpCascade)
|
|
|
|
pl := pigo.NewPuplocCascade()
|
|
|
|
for _, cascade := range cascades {
|
|
puplocCascade, err = d.ParseCascade(path + cascade)
|
|
if err != nil {
|
|
d.Log("Error reading the cascade file: %v", err)
|
|
}
|
|
flpc, err := pl.UnpackCascade(puplocCascade)
|
|
flpcs[cascade] = append(flpcs[cascade], &FlpCascade{flpc, err})
|
|
}
|
|
return flpcs, err
|
|
}
|