package detector import ( "errors" pigo "github.com/esimov/pigo/core" ) // FlpCascade holds the binary representation of the facial landmark points cascade files type FlpCascade struct { *pigo.PuplocCascade error } const perturb = 63 var ( cascade []byte puplocCascade []byte faceClassifier *pigo.Pigo puplocClassifier *pigo.PuplocCascade flpcs map[string][]*FlpCascade imgParams *pigo.ImageParams err error ) var ( eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"} mouthCascade = []string{"lp93", "lp84", "lp82", "lp81"} ) // UnpackCascades unpack all of used cascade files. func (d *Detector) UnpackCascades() error { p := pigo.NewPigo() cascade, err = d.ParseCascade("/cascade/facefinder") if err != nil { return errors.New("error reading the facefinder cascade file") } // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. faceClassifier, err = p.Unpack(cascade) if err != nil { return errors.New("error unpacking the facefinder cascade file") } plc := pigo.NewPuplocCascade() puplocCascade, err = d.ParseCascade("/cascade/puploc") if err != nil { return errors.New("error reading the puploc cascade file") } puplocClassifier, err = plc.UnpackCascade(puplocCascade) if err != nil { return errors.New("error unpacking the puploc cascade file") } flpcs, err = d.parseFlpCascades("/cascade/lps/") if err != nil { return errors.New("error unpacking the facial landmark points detection cascades") } return nil } // DetectFaces runs the cluster detection over the webcam frame // received as a pixel array and returns the detected faces. func (d *Detector) DetectFaces(pixels []uint8, width, height int) [][]int { results := d.clusterDetection(pixels, width, height) dets := make([][]int, len(results)) for i := 0; i < len(results); i++ { dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q)) } return dets } // DetectLeftPupil detects the left pupil func (d *Detector) DetectLeftPupil(results []int) *pigo.Puploc { puploc := &pigo.Puploc{ Row: results[0] - int(0.085*float32(results[2])), Col: results[1] - int(0.185*float32(results[2])), Scale: float32(results[2]) * 0.4, Perturbs: perturb, } leftEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false) if leftEye.Row > 0 && leftEye.Col > 0 { return leftEye } return nil } // DetectRightPupil detects the right pupil func (d *Detector) DetectRightPupil(results []int) *pigo.Puploc { puploc := &pigo.Puploc{ Row: results[0] - int(0.085*float32(results[2])), Col: results[1] + int(0.185*float32(results[2])), Scale: float32(results[2]) * 0.4, Perturbs: perturb, } rightEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false) if rightEye.Row > 0 && rightEye.Col > 0 { return rightEye } return nil } // DetectLandmarkPoints detects the landmark points func (d *Detector) DetectLandmarkPoints(leftEye, rightEye *pigo.Puploc) [][]int { var ( det = make([][]int, 15) idx int ) for _, eye := range eyeCascades { for _, flpc := range flpcs[eye] { flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false) if flp.Row > 0 && flp.Col > 0 { det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale)) } idx++ flp = flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true) if flp.Row > 0 && flp.Col > 0 { det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale)) } idx++ } } for _, mouth := range mouthCascade { for _, flpc := range flpcs[mouth] { flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false) if flp.Row > 0 && flp.Col > 0 { det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale)) } idx++ } } flp := flpcs["lp84"][0].GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true) if flp.Row > 0 && flp.Col > 0 { det[idx] = append(det[idx], flp.Col, flp.Row, int(flp.Scale)) } return det } // clusterDetection runs Pigo face detector core methods // and returns a cluster with the detected faces coordinates. func (d *Detector) clusterDetection(pixels []uint8, width, height int) []pigo.Detection { imgParams = &pigo.ImageParams{ Pixels: pixels, Rows: width, Cols: height, Dim: height, } cParams := pigo.CascadeParams{ MinSize: 200, MaxSize: 480, ShiftFactor: 0.1, ScaleFactor: 1.1, ImageParams: *imgParams, } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets := faceClassifier.RunCascade(cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = faceClassifier.ClusterDetections(dets, 0.1) return dets } // parseFlpCascades reads the facial landmark points cascades from the provided url. func (d *Detector) parseFlpCascades(path string) (map[string][]*FlpCascade, error) { cascades := append(eyeCascades, mouthCascade...) flpcs := make(map[string][]*FlpCascade) pl := pigo.NewPuplocCascade() for _, cascade := range cascades { puplocCascade, err = d.ParseCascade(path + cascade) if err != nil { d.Log("Error reading the cascade file: %v", err) } flpc, err := pl.UnpackCascade(puplocCascade) flpcs[cascade] = append(flpcs[cascade], &FlpCascade{flpc, err}) } return flpcs, err }