mirror of
https://github.com/esimov/pigo.git
synced 2025-10-06 00:26:50 +08:00
133 lines
3.7 KiB
Go
133 lines
3.7 KiB
Go
package pigo_test
|
|
|
|
import (
|
|
"io/ioutil"
|
|
"log"
|
|
"testing"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
var flpc []byte
|
|
|
|
func init() {
|
|
var err error
|
|
flpc, err = ioutil.ReadFile("../cascade/lps/lp42")
|
|
if err != nil {
|
|
log.Fatalf("missing cascade file: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestFlploc_UnpackCascadeFileShouldNotBeNil(t *testing.T) {
|
|
var (
|
|
err error
|
|
pl = pigo.NewPuplocCascade()
|
|
)
|
|
plc, err = pl.UnpackCascade(flpc)
|
|
if err != nil {
|
|
t.Fatalf("failed unpacking the cascade file: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestFlploc_LandmarkPointsFinderShouldReturnDetectionPoints(t *testing.T) {
|
|
p := pigo.NewPigo()
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
classifier, err := p.Unpack(pigoCascade)
|
|
if err != nil {
|
|
t.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
faces := classifier.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
faces = classifier.ClusterDetections(faces, 0.1)
|
|
|
|
landMarkPoints := []pigo.Puploc{}
|
|
|
|
for _, face := range faces {
|
|
if face.Scale > 50 {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: face.Row - int(0.075*float32(face.Scale)),
|
|
Col: face.Col - int(0.175*float32(face.Scale)),
|
|
Scale: float32(face.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: face.Row - int(0.075*float32(face.Scale)),
|
|
Col: face.Col + int(0.185*float32(face.Scale)),
|
|
Scale: float32(face.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
flp := plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, 63, false)
|
|
landMarkPoints = append(landMarkPoints, *flp)
|
|
}
|
|
}
|
|
if len(landMarkPoints) == 0 {
|
|
t.Fatalf("should have been detected facial landmark points: %s", err)
|
|
}
|
|
}
|
|
|
|
func BenchmarkFlploc(b *testing.B) {
|
|
pg := pigo.NewPigo()
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
classifier, err := pg.Unpack(pigoCascade)
|
|
if err != nil {
|
|
b.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
pl := pigo.PuplocCascade{}
|
|
plc, err := pl.UnpackCascade(puplocCascade)
|
|
if err != nil {
|
|
b.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
var faces []pigo.Detection
|
|
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
pixs := pigo.RgbToGrayscale(srcImg)
|
|
cParams.Pixels = pixs
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
faces = classifier.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
faces = classifier.ClusterDetections(faces, 0.1)
|
|
|
|
for _, face := range faces {
|
|
if face.Scale > 50 {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: face.Row - int(0.075*float32(face.Scale)),
|
|
Col: face.Col - int(0.175*float32(face.Scale)),
|
|
Scale: float32(face.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: face.Row - int(0.075*float32(face.Scale)),
|
|
Col: face.Col + int(0.185*float32(face.Scale)),
|
|
Scale: float32(face.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, 63, false)
|
|
|
|
}
|
|
}
|
|
}
|
|
_ = faces
|
|
}
|