package pigo_test import ( "io/ioutil" "log" "testing" pigo "github.com/esimov/pigo/core" ) var flpc []byte func init() { var err error flpc, err = ioutil.ReadFile("../cascade/lps/lp42") if err != nil { log.Fatalf("missing cascade file: %v", err) } } func TestFlploc_UnpackCascadeFileShouldNotBeNil(t *testing.T) { var ( err error pl = pigo.NewPuplocCascade() ) plc, err = pl.UnpackCascade(flpc) if err != nil { t.Fatalf("failed unpacking the cascade file: %v", err) } } func TestFlploc_LandmarkPointsFinderShouldReturnDetectionPoints(t *testing.T) { p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err := p.Unpack(pigoCascade) if err != nil { t.Fatalf("error reading the cascade file: %s", err) } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. faces := classifier.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, 0.1) landMarkPoints := []pigo.Puploc{} for _, face := range faces { if face.Scale > 50 { // left eye puploc := &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) flp := plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, 63, false) landMarkPoints = append(landMarkPoints, *flp) } } if len(landMarkPoints) == 0 { t.Fatalf("should have been detected facial landmark points: %s", err) } } func BenchmarkFlploc(b *testing.B) { pg := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err := pg.Unpack(pigoCascade) if err != nil { b.Fatalf("error reading the cascade file: %s", err) } pl := pigo.PuplocCascade{} plc, err := pl.UnpackCascade(puplocCascade) if err != nil { b.Fatalf("error reading the cascade file: %s", err) } var faces []pigo.Detection b.ResetTimer() for i := 0; i < b.N; i++ { pixs := pigo.RgbToGrayscale(srcImg) cParams.Pixels = pixs // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. faces = classifier.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, 0.1) for _, face := range faces { if face.Scale > 50 { // left eye puploc := &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, 63, false) } } } _ = faces }