mirror of
https://github.com/esimov/pigo.git
synced 2025-09-28 04:52:19 +08:00
144 lines
3.6 KiB
Go
144 lines
3.6 KiB
Go
package pigo_test
|
|
|
|
import (
|
|
"image"
|
|
"io/ioutil"
|
|
"log"
|
|
"path/filepath"
|
|
"runtime"
|
|
"testing"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
var (
|
|
p = pigo.NewPigo()
|
|
err error
|
|
faceCasc []byte
|
|
pixs []uint8
|
|
srcImg *image.NRGBA
|
|
)
|
|
|
|
func init() {
|
|
faceCasc, err = ioutil.ReadFile("../cascade/facefinder")
|
|
if err != nil {
|
|
log.Fatalf("Error reading the cascade file: %v", err)
|
|
}
|
|
|
|
source := filepath.Join("../testdata", "sample.jpg")
|
|
srcImg, err = pigo.GetImage(source)
|
|
if err != nil {
|
|
log.Fatalf("error reading the source file: %s", err)
|
|
}
|
|
|
|
pixs = pigo.RgbToGrayscale(srcImg)
|
|
cols, rows := srcImg.Bounds().Max.X, srcImg.Bounds().Max.Y
|
|
|
|
imgParams = &pigo.ImageParams{
|
|
Pixels: pixs,
|
|
Rows: rows,
|
|
Cols: cols,
|
|
Dim: cols,
|
|
}
|
|
|
|
cParams = &pigo.CascadeParams{
|
|
MinSize: 20,
|
|
MaxSize: 1000,
|
|
ShiftFactor: 0.2,
|
|
ScaleFactor: 1.1,
|
|
ImageParams: *imgParams,
|
|
}
|
|
}
|
|
|
|
func TestPigo_UnpackCascadeFileShouldNotBeNil(t *testing.T) {
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
t.Fatalf("failed unpacking the cascade file: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestPigo_InputImageShouldBeGrayscale(t *testing.T) {
|
|
// Since an image converted grayscale has only one channel,we should assume
|
|
// that the grayscale image array length is the source image length / 4.
|
|
if len(imgParams.Pixels) != len(srcImg.Pix)/4 {
|
|
t.Fatalf("the source image should be converted to grayscale")
|
|
}
|
|
}
|
|
|
|
func TestPigo_Detector_ShouldDetectFace(t *testing.T) {
|
|
// Unpack the facefinder binary cascade file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
t.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := p.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
if len(dets) == 0 {
|
|
t.Fatalf("face should've been detected")
|
|
}
|
|
}
|
|
|
|
func BenchmarkPigoUnpackCascade(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
// Unpack the facefinder binary cascade file.
|
|
_, err := p.Unpack(faceCasc)
|
|
if err != nil {
|
|
log.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkPigoFaceDetection(b *testing.B) {
|
|
var dets []pigo.Detection
|
|
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
log.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
pixs := pigo.RgbToGrayscale(srcImg)
|
|
cParams.Pixels = pixs
|
|
|
|
runtime.GC()
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets = p.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
}
|
|
_ = dets
|
|
}
|
|
|
|
func BenchmarkPigoClusterDetection(b *testing.B) {
|
|
var dets []pigo.Detection
|
|
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
log.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
pixs := pigo.RgbToGrayscale(srcImg)
|
|
cParams.Pixels = pixs
|
|
|
|
runtime.GC()
|
|
b.ResetTimer()
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets = p.RunCascade(*cParams, 0.0)
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
}
|
|
_ = dets
|
|
}
|