package pigo_test import ( "image" "io/ioutil" "log" "path/filepath" "runtime" "testing" pigo "github.com/esimov/pigo/core" ) var ( p = pigo.NewPigo() err error faceCasc []byte pixs []uint8 srcImg *image.NRGBA ) func init() { faceCasc, err = ioutil.ReadFile("../cascade/facefinder") if err != nil { log.Fatalf("Error reading the cascade file: %v", err) } source := filepath.Join("../testdata", "sample.jpg") srcImg, err = pigo.GetImage(source) if err != nil { log.Fatalf("error reading the source file: %s", err) } pixs = pigo.RgbToGrayscale(srcImg) cols, rows := srcImg.Bounds().Max.X, srcImg.Bounds().Max.Y imgParams = &pigo.ImageParams{ Pixels: pixs, Rows: rows, Cols: cols, Dim: cols, } cParams = &pigo.CascadeParams{ MinSize: 20, MaxSize: 1000, ShiftFactor: 0.2, ScaleFactor: 1.1, ImageParams: *imgParams, } } func TestPigo_UnpackCascadeFileShouldNotBeNil(t *testing.T) { p, err = p.Unpack(faceCasc) if err != nil { t.Fatalf("failed unpacking the cascade file: %v", err) } } func TestPigo_InputImageShouldBeGrayscale(t *testing.T) { // Since an image converted grayscale has only one channel,we should assume // that the grayscale image array length is the source image length / 4. if len(imgParams.Pixels) != len(srcImg.Pix)/4 { t.Fatalf("the source image should be converted to grayscale") } } func TestPigo_Detector_ShouldDetectFace(t *testing.T) { // Unpack the facefinder binary cascade file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. p, err = p.Unpack(faceCasc) if err != nil { t.Fatalf("error reading the cascade file: %s", err) } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets := p.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = p.ClusterDetections(dets, 0.1) if len(dets) == 0 { t.Fatalf("face should've been detected") } } func BenchmarkPigoUnpackCascade(b *testing.B) { for i := 0; i < b.N; i++ { // Unpack the facefinder binary cascade file. _, err := p.Unpack(faceCasc) if err != nil { log.Fatalf("error reading the cascade file: %s", err) } } } func BenchmarkPigoFaceDetection(b *testing.B) { var dets []pigo.Detection p, err = p.Unpack(faceCasc) if err != nil { log.Fatalf("error reading the cascade file: %s", err) } pixs := pigo.RgbToGrayscale(srcImg) cParams.Pixels = pixs runtime.GC() b.ResetTimer() for i := 0; i < b.N; i++ { // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets = p.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = p.ClusterDetections(dets, 0.1) } _ = dets } func BenchmarkPigoClusterDetection(b *testing.B) { var dets []pigo.Detection p, err = p.Unpack(faceCasc) if err != nil { log.Fatalf("error reading the cascade file: %s", err) } pixs := pigo.RgbToGrayscale(srcImg) cParams.Pixels = pixs runtime.GC() b.ResetTimer() // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets = p.RunCascade(*cParams, 0.0) for i := 0; i < b.N; i++ { // Calculate the intersection over union (IoU) of two clusters. dets = p.ClusterDetections(dets, 0.1) } _ = dets }