mirror of
https://github.com/esimov/pigo.git
synced 2025-10-04 15:52:45 +08:00
150 lines
4.2 KiB
Go
150 lines
4.2 KiB
Go
package main
|
|
|
|
import "C"
|
|
|
|
import (
|
|
"io/ioutil"
|
|
"log"
|
|
"math"
|
|
"runtime"
|
|
"unsafe"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
type point struct {
|
|
x, y int
|
|
}
|
|
|
|
var (
|
|
cascade []byte
|
|
puplocCascade []byte
|
|
faceClassifier *pigo.Pigo
|
|
puplocClassifier *pigo.PuplocCascade
|
|
imageParams *pigo.ImageParams
|
|
err error
|
|
)
|
|
|
|
func main() {}
|
|
|
|
//export FindFaces
|
|
func FindFaces(pixels []uint8) uintptr {
|
|
pointCh := make(chan uintptr)
|
|
|
|
results := clusterDetection(pixels, 480, 640)
|
|
dets := make([][]int, len(results))
|
|
|
|
for i := 0; i < len(results); i++ {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
|
Col: results[i].Col - int(0.185*float32(results[i].Scale)),
|
|
Scale: float32(results[i].Scale) * 0.4,
|
|
Perturbs: 50,
|
|
}
|
|
det := puplocClassifier.RunDetector(*puploc, *imageParams, 0.0, false)
|
|
if det.Row > 0 && det.Col > 0 {
|
|
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
|
|
}
|
|
p1 := &point{x: det.Row, y: det.Col}
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
|
Col: results[i].Col + int(0.185*float32(results[i].Scale)),
|
|
Scale: float32(results[i].Scale) * 0.4,
|
|
Perturbs: 50,
|
|
}
|
|
|
|
det = puplocClassifier.RunDetector(*puploc, *imageParams, 0.0, false)
|
|
if det.Row > 0 && det.Col > 0 {
|
|
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
|
|
}
|
|
p2 := &point{x: det.Row, y: det.Col}
|
|
|
|
// Calculate the lean angle between the pupils.
|
|
angle := math.Atan2(float64(p2.y-p1.y), float64(p2.x-p1.x)) * 180 / math.Pi
|
|
// face
|
|
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q), int(angle))
|
|
}
|
|
|
|
coords := make([]int, 0, len(dets))
|
|
go func() {
|
|
// Since in Go we cannot transfer a 2d array through an array pointer
|
|
// we have to transform it into 1d array.
|
|
for _, v := range dets {
|
|
coords = append(coords, v...)
|
|
}
|
|
|
|
// Include as a first slice element the number of detected faces.
|
|
// We need to transfer this value in order to define the Python array buffer length.
|
|
coords = append([]int{len(dets), 0, 0, 0, 0}, coords...)
|
|
|
|
// Convert the slice into an array pointer.
|
|
s := *(*[]uint8)(unsafe.Pointer(&coords))
|
|
p := uintptr(unsafe.Pointer(&s[0]))
|
|
|
|
// Ensure `det` is not freed up by GC prematurely.
|
|
runtime.KeepAlive(coords)
|
|
|
|
// return the pointer address
|
|
pointCh <- p
|
|
}()
|
|
return <-pointCh
|
|
}
|
|
|
|
// clusterDetection runs Pigo face detector core methods
|
|
// and returns a cluster with the detected faces coordinates.
|
|
func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
|
|
imageParams = &pigo.ImageParams{
|
|
Pixels: pixels,
|
|
Rows: rows,
|
|
Cols: cols,
|
|
Dim: cols,
|
|
}
|
|
cParams := pigo.CascadeParams{
|
|
MinSize: 200,
|
|
MaxSize: 600,
|
|
ShiftFactor: 0.1,
|
|
ScaleFactor: 1.1,
|
|
ImageParams: *imageParams,
|
|
}
|
|
|
|
// Ensure that the face detection classifier is loaded only once.
|
|
if len(cascade) == 0 {
|
|
cascade, err = ioutil.ReadFile("../../cascade/facefinder")
|
|
if err != nil {
|
|
log.Fatalf("Error reading the cascade file: %v", err)
|
|
}
|
|
p := pigo.NewPigo()
|
|
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
faceClassifier, err = p.Unpack(cascade)
|
|
if err != nil {
|
|
log.Fatalf("Error unpacking the cascade file: %s", err)
|
|
}
|
|
}
|
|
|
|
// Ensure that we load the pupil localization cascade only once
|
|
if len(puplocCascade) == 0 {
|
|
puplocCascade, err := ioutil.ReadFile("../../cascade/puploc")
|
|
if err != nil {
|
|
log.Fatalf("Error reading the puploc cascade file: %s", err)
|
|
}
|
|
puplocClassifier, err = puplocClassifier.UnpackCascade(puplocCascade)
|
|
if err != nil {
|
|
log.Fatalf("Error unpacking the puploc cascade file: %s", err)
|
|
}
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := faceClassifier.RunCascade(cParams, 0.0)
|
|
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = faceClassifier.ClusterDetections(dets, 0.0)
|
|
|
|
return dets
|
|
}
|