package main import "C" import ( "io/ioutil" "log" "math" "runtime" "unsafe" pigo "github.com/esimov/pigo/core" ) type point struct { x, y int } var ( cascade []byte puplocCascade []byte faceClassifier *pigo.Pigo puplocClassifier *pigo.PuplocCascade imageParams *pigo.ImageParams err error ) func main() {} //export FindFaces func FindFaces(pixels []uint8) uintptr { pointCh := make(chan uintptr) results := clusterDetection(pixels, 480, 640) dets := make([][]int, len(results)) for i := 0; i < len(results); i++ { // left eye puploc := &pigo.Puploc{ Row: results[i].Row - int(0.085*float32(results[i].Scale)), Col: results[i].Col - int(0.185*float32(results[i].Scale)), Scale: float32(results[i].Scale) * 0.4, Perturbs: 50, } det := puplocClassifier.RunDetector(*puploc, *imageParams, 0.0, false) if det.Row > 0 && det.Col > 0 { dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0) } p1 := &point{x: det.Row, y: det.Col} // right eye puploc = &pigo.Puploc{ Row: results[i].Row - int(0.085*float32(results[i].Scale)), Col: results[i].Col + int(0.185*float32(results[i].Scale)), Scale: float32(results[i].Scale) * 0.4, Perturbs: 50, } det = puplocClassifier.RunDetector(*puploc, *imageParams, 0.0, false) if det.Row > 0 && det.Col > 0 { dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0) } p2 := &point{x: det.Row, y: det.Col} // Calculate the lean angle between the pupils. angle := math.Atan2(float64(p2.y-p1.y), float64(p2.x-p1.x)) * 180 / math.Pi // face dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q), int(angle)) } coords := make([]int, 0, len(dets)) go func() { // Since in Go we cannot transfer a 2d array through an array pointer // we have to transform it into 1d array. for _, v := range dets { coords = append(coords, v...) } // Include as a first slice element the number of detected faces. // We need to transfer this value in order to define the Python array buffer length. coords = append([]int{len(dets), 0, 0, 0, 0}, coords...) // Convert the slice into an array pointer. s := *(*[]uint8)(unsafe.Pointer(&coords)) p := uintptr(unsafe.Pointer(&s[0])) // Ensure `det` is not freed up by GC prematurely. runtime.KeepAlive(coords) // return the pointer address pointCh <- p }() return <-pointCh } // clusterDetection runs Pigo face detector core methods // and returns a cluster with the detected faces coordinates. func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection { imageParams = &pigo.ImageParams{ Pixels: pixels, Rows: rows, Cols: cols, Dim: cols, } cParams := pigo.CascadeParams{ MinSize: 200, MaxSize: 600, ShiftFactor: 0.1, ScaleFactor: 1.1, ImageParams: *imageParams, } // Ensure that the face detection classifier is loaded only once. if len(cascade) == 0 { cascade, err = ioutil.ReadFile("../../cascade/facefinder") if err != nil { log.Fatalf("Error reading the cascade file: %v", err) } p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. faceClassifier, err = p.Unpack(cascade) if err != nil { log.Fatalf("Error unpacking the cascade file: %s", err) } } // Ensure that we load the pupil localization cascade only once if len(puplocCascade) == 0 { puplocCascade, err := ioutil.ReadFile("../../cascade/puploc") if err != nil { log.Fatalf("Error reading the puploc cascade file: %s", err) } puplocClassifier, err = puplocClassifier.UnpackCascade(puplocCascade) if err != nil { log.Fatalf("Error unpacking the puploc cascade file: %s", err) } } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets := faceClassifier.RunCascade(cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = faceClassifier.ClusterDetections(dets, 0.0) return dets }