mirror of
https://github.com/kerberos-io/heatmap.git
synced 2025-09-26 20:31:14 +08:00
cleaned up the file
This commit is contained in:
@@ -1,9 +1,11 @@
|
||||
import cv2
|
||||
import datetime
|
||||
import imutils
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
from centroidtracker import CentroidTracker
|
||||
import pandas as pd
|
||||
import imutils
|
||||
|
||||
|
||||
protopath = "MobileNetSSD_deploy.prototxt"
|
||||
modelpath = "MobileNetSSD_deploy.caffemodel"
|
||||
@@ -15,141 +17,170 @@ detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
||||
|
||||
|
||||
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
||||
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
||||
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
||||
"sofa", "train", "tvmonitor"]
|
||||
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
||||
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
||||
"sofa", "train", "tvmonitor"]
|
||||
|
||||
# maxDisappeared, time wait when object moves out of frame
|
||||
tracker = CentroidTracker(maxDisappeared=700, maxDistance=220)
|
||||
tracker = CentroidTracker(maxDisappeared=500, maxDistance=220)
|
||||
|
||||
|
||||
def non_max_suppression_fast(boxes, overlapThresh):
|
||||
try:
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
'"Cobine boundingboxes that overlap into one bbox"'
|
||||
try:
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
|
||||
if boxes.dtype.kind == "i":
|
||||
boxes = boxes.astype("float")
|
||||
if boxes.dtype.kind == "i":
|
||||
boxes = boxes.astype("float")
|
||||
|
||||
pick = []
|
||||
pick = []
|
||||
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
idxs = np.argsort(y2)
|
||||
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
idxs = np.argsort(y2)
|
||||
while len(idxs) > 0:
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
|
||||
while len(idxs) > 0:
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
idxs = np.delete(idxs, np.concatenate(([last],
|
||||
np.where(overlap > overlapThresh)[0])))
|
||||
|
||||
idxs = np.delete(idxs, np.concatenate(([last],
|
||||
np.where(overlap > overlapThresh)[0])))
|
||||
return boxes[pick].astype("int")
|
||||
except Exception as e:
|
||||
print("Exception occurred in non_max_suppression : {}".format(e))
|
||||
|
||||
return boxes[pick].astype("int")
|
||||
except Exception as e:
|
||||
print("Exception occurred in non_max_suppression : {}".format(e))
|
||||
def convert_to_2d(Xcenter, y2):
|
||||
'" Convert the coordinates from a 3d playing field to a 2d playing field"'
|
||||
pts_src = np.array([[257, 262], [370, 225], [492, 190], [294, 324], [474, 272], [620, 213], [727, 383], [799, 259]])
|
||||
# Take points from the frame as reference and give the same point coordinates on the picture for a transformation
|
||||
pts_dst = np.array([[110, 145], [349, 145], [588, 145], [110, 500], [349, 500], [588, 500], [349, 855], [588, 855]])
|
||||
|
||||
# calculate matrix H
|
||||
h, status = cv2.findHomography(pts_src, pts_dst)
|
||||
|
||||
def main():
|
||||
cap = cv2.VideoCapture('1639943552_6-967003_camera1_200-200-400-400_24_769.mp4')
|
||||
# provide a point you wish to map from image 1 to image 2
|
||||
a = np.array([[Xcenter, y2]], dtype='float32')
|
||||
a = np.array([a])
|
||||
|
||||
fps_start_time = datetime.datetime.now()
|
||||
fps = 0
|
||||
total_frames = 0
|
||||
centroid_dict = defaultdict(list)
|
||||
object_id_list = []
|
||||
# finally, get the mapping
|
||||
pointsOut = cv2.perspectiveTransform(a, h)
|
||||
pointsOut = pointsOut.astype(int)
|
||||
return pointsOut
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = imutils.resize(frame, width=600)
|
||||
total_frames = total_frames + 1
|
||||
(height, width) = frame.shape[:2]
|
||||
def main(video="1639943552_6-967003_camera1_200-200-400-400_24_769.mp4"):
|
||||
'"Read the frames, recognise humans and track them. The coordinates of the bottom of the bbox are saved for transormation and plotting"'
|
||||
cap = cv2.VideoCapture(video)
|
||||
|
||||
blob = cv2.dnn.blobFromImage(frame, 0.007843, (width, height), 127.5)
|
||||
detector.setInput(blob)
|
||||
person_detections = detector.forward()
|
||||
paddel_2d = cv2.imread('media/paddelfield.jpeg')
|
||||
|
||||
rects = []
|
||||
for i in np.arange(0, person_detections.shape[2]):
|
||||
confidence = person_detections[0, 0, i, 2]
|
||||
if confidence > 0.5:
|
||||
idx = int(person_detections[0, 0, i, 1])
|
||||
fps_start_time = datetime.datetime.now()
|
||||
fps = 0
|
||||
total_frames = 0
|
||||
centroid_dict = defaultdict(list)
|
||||
object_id_list = []
|
||||
|
||||
if CLASSES[idx] != "person":
|
||||
continue
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
frame = imutils.resize(frame, width=800)
|
||||
# frame = frame[540:1080, 700:1920]
|
||||
total_frames = total_frames + 1
|
||||
(height, width) = frame.shape[:2]
|
||||
|
||||
person_box = person_detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
||||
(startX, startY, endX, endY) = person_box.astype("int")
|
||||
rects.append(person_box)
|
||||
blob = cv2.dnn.blobFromImage(frame, 0.007843, (width, height), 127.5)
|
||||
detector.setInput(blob)
|
||||
person_detections = detector.forward()
|
||||
|
||||
boundingboxes = np.array(rects)
|
||||
boundingboxes = boundingboxes.astype(int)
|
||||
rects = non_max_suppression_fast(boundingboxes, 0.4)
|
||||
objects = tracker.update(rects)
|
||||
rects = []
|
||||
for i in np.arange(0, person_detections.shape[2]):
|
||||
confidence = person_detections[0, 0, i, 2]
|
||||
if confidence > 0.5:
|
||||
idx = int(person_detections[0, 0, i, 1])
|
||||
|
||||
for (objectId, bbox) in objects.items():
|
||||
x1, y1, x2, y2 = bbox
|
||||
x1 = int(x1)
|
||||
y1 = int(y1)
|
||||
x2 = int(x2)
|
||||
y2 = int(y2)
|
||||
if CLASSES[idx] != "person":
|
||||
continue
|
||||
|
||||
xCenter = int((x1 + x2) / 2)
|
||||
yCenter = int((y1 + y2) / 2)
|
||||
person_box = person_detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
||||
(startX, startY, endX, endY) = person_box.astype("int")
|
||||
rects.append(person_box)
|
||||
|
||||
cv2.circle(frame, (xCenter, y2), 5, (0, 255, 0), -1)
|
||||
boundingboxes = np.array(rects)
|
||||
boundingboxes = boundingboxes.astype(int)
|
||||
rects = non_max_suppression_fast(boundingboxes, 0.4)
|
||||
objects = tracker.update(rects)
|
||||
|
||||
centroid_dict[objectId].append((xCenter, y2))
|
||||
for (objectId, bbox) in objects.items():
|
||||
x1, y1, x2, y2 = bbox
|
||||
x1 = int(x1)
|
||||
y1 = int(y1)
|
||||
x2 = int(x2)
|
||||
y2 = int(y2)
|
||||
|
||||
if objectId not in object_id_list:
|
||||
object_id_list.append(objectId)
|
||||
start_pt = (xCenter, y2)
|
||||
end_pt = (xCenter, y2)
|
||||
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 2)
|
||||
else:
|
||||
L = len(centroid_dict[objectId])
|
||||
for pt in range(len(centroid_dict[objectId])):
|
||||
if not pt + 1 == L:
|
||||
start_pt = (centroid_dict[objectId][pt][0], centroid_dict[objectId][pt][1])
|
||||
end_pt = (centroid_dict[objectId][pt + 1][0], centroid_dict[objectId][pt + 1][1])
|
||||
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 1)
|
||||
xCenter = int((x1 + x2) / 2)
|
||||
yCenter = int((y1 + y2) / 2)
|
||||
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
||||
text = "ID: {}".format(objectId)
|
||||
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
||||
cv2.circle(frame, (xCenter, y2), 5, (0, 255, 0), -1)
|
||||
|
||||
fps_end_time = datetime.datetime.now()
|
||||
time_diff = fps_end_time - fps_start_time
|
||||
if time_diff.seconds == 0:
|
||||
fps = 0.0
|
||||
else:
|
||||
fps = (total_frames / time_diff.seconds)
|
||||
fps_text = "FPS: {:.2f}".format(fps)
|
||||
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
||||
# saving the converted cords
|
||||
pointsout = convert_to_2d(xCenter, y2)
|
||||
for tuple in pointsout:
|
||||
for points in tuple:
|
||||
pd.DataFrame({'x': [points[0]], 'y': [points[1]]}, index=[objectId]).to_csv('cords.csv', mode='a',
|
||||
header=False)
|
||||
|
||||
cv2.imshow("Application", frame)
|
||||
# cv2.VideoWriter_fourcc("new_vid.mp4", cv2.VideoWriter_fourcc(*'mp4v'), 20, (width, height))
|
||||
key = cv2.waitKey(1)
|
||||
if key == ord('q'):
|
||||
break
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
centroid_dict[objectId].append((xCenter, y2))
|
||||
|
||||
if objectId not in object_id_list:
|
||||
object_id_list.append(objectId)
|
||||
start_pt = (xCenter, y2)
|
||||
end_pt = (xCenter, y2)
|
||||
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 2)
|
||||
else:
|
||||
L = len(centroid_dict[objectId])
|
||||
for pt in range(len(centroid_dict[objectId])):
|
||||
if not pt + 1 == L:
|
||||
start_pt = (centroid_dict[objectId][pt][0], centroid_dict[objectId][pt][1])
|
||||
end_pt = (centroid_dict[objectId][pt + 1][0], centroid_dict[objectId][pt + 1][1])
|
||||
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 1)
|
||||
|
||||
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
||||
text = "ID: {}".format(objectId)
|
||||
cv2.putText(frame, text, (x1, y1 - 5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
||||
|
||||
fps_end_time = datetime.datetime.now()
|
||||
time_diff = fps_end_time - fps_start_time
|
||||
if time_diff.seconds == 0:
|
||||
fps = 0.0
|
||||
else:
|
||||
fps = (total_frames / time_diff.seconds)
|
||||
fps_text = "FPS: {:.2f}".format(fps)
|
||||
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
||||
|
||||
# cv2.imshow("Application", frame)
|
||||
key = cv2.waitKey(1)
|
||||
if key == ord('q'):
|
||||
break
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user