Files
heatmap/person_tracker.py
2022-01-25 14:21:12 +01:00

187 lines
5.6 KiB
Python

import cv2
import datetime
import numpy as np
from collections import defaultdict
from centroidtracker import CentroidTracker
import pandas as pd
import imutils
protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
# Only enable it if you are using OpenVino environment
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# maxDisappeared, time wait when object moves out of frame
tracker = CentroidTracker(maxDisappeared=500, maxDistance=220)
def non_max_suppression_fast(boxes, overlapThresh):
'"Cobine boundingboxes that overlap into one bbox"'
try:
if len(boxes) == 0:
return []
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
return boxes[pick].astype("int")
except Exception as e:
print("Exception occurred in non_max_suppression : {}".format(e))
def convert_to_2d(Xcenter, y2):
'" Convert the coordinates from a 3d playing field to a 2d playing field"'
pts_src = np.array([[257, 262], [370, 225], [492, 190], [294, 324], [474, 272], [620, 213], [727, 383], [799, 259]])
# Take points from the frame as reference and give the same point coordinates on the picture for a transformation
pts_dst = np.array([[110, 145], [349, 145], [588, 145], [110, 500], [349, 500], [588, 500], [349, 855], [588, 855]])
# calculate matrix H
h, status = cv2.findHomography(pts_src, pts_dst)
# provide a point you wish to map from image 1 to image 2
a = np.array([[Xcenter, y2]], dtype='float32')
a = np.array([a])
# finally, get the mapping
pointsOut = cv2.perspectiveTransform(a, h)
pointsOut = pointsOut.astype(int)
return pointsOut
def main(video="1639943552_6-967003_camera1_200-200-400-400_24_769.mp4"):
'"Read the frames, recognise humans and track them. The coordinates of the bottom of the bbox are saved for transormation and plotting"'
cap = cv2.VideoCapture(video)
paddel_2d = cv2.imread('media/paddelfield.jpeg')
fps_start_time = datetime.datetime.now()
fps = 0
total_frames = 0
centroid_dict = defaultdict(list)
object_id_list = []
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=800)
# frame = frame[540:1080, 700:1920]
total_frames = total_frames + 1
(height, width) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (width, height), 127.5)
detector.setInput(blob)
person_detections = detector.forward()
rects = []
for i in np.arange(0, person_detections.shape[2]):
confidence = person_detections[0, 0, i, 2]
if confidence > 0.5:
idx = int(person_detections[0, 0, i, 1])
if CLASSES[idx] != "person":
continue
person_box = person_detections[0, 0, i, 3:7] * np.array([width, height, width, height])
(startX, startY, endX, endY) = person_box.astype("int")
rects.append(person_box)
boundingboxes = np.array(rects)
boundingboxes = boundingboxes.astype(int)
rects = non_max_suppression_fast(boundingboxes, 0.4)
objects = tracker.update(rects)
for (objectId, bbox) in objects.items():
x1, y1, x2, y2 = bbox
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
xCenter = int((x1 + x2) / 2)
yCenter = int((y1 + y2) / 2)
cv2.circle(frame, (xCenter, y2), 5, (0, 255, 0), -1)
# saving the converted cords
pointsout = convert_to_2d(xCenter, y2)
for tuple in pointsout:
for points in tuple:
pd.DataFrame({'x': [points[0]], 'y': [points[1]]}, index=[objectId]).to_csv('cords.csv', mode='a',
header=False)
centroid_dict[objectId].append((xCenter, y2))
if objectId not in object_id_list:
object_id_list.append(objectId)
start_pt = (xCenter, y2)
end_pt = (xCenter, y2)
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 2)
else:
L = len(centroid_dict[objectId])
for pt in range(len(centroid_dict[objectId])):
if not pt + 1 == L:
start_pt = (centroid_dict[objectId][pt][0], centroid_dict[objectId][pt][1])
end_pt = (centroid_dict[objectId][pt + 1][0], centroid_dict[objectId][pt + 1][1])
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 1)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
text = "ID: {}".format(objectId)
cv2.putText(frame, text, (x1, y1 - 5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
fps_end_time = datetime.datetime.now()
time_diff = fps_end_time - fps_start_time
if time_diff.seconds == 0:
fps = 0.0
else:
fps = (total_frames / time_diff.seconds)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
# cv2.imshow("Application", frame)
key = cv2.waitKey(1)
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
main()