mirror of
https://github.com/gonum/gonum.git
synced 2025-10-08 00:20:11 +08:00
261 lines
7.3 KiB
Go
261 lines
7.3 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package distuv
|
|
|
|
import (
|
|
"math"
|
|
|
|
"golang.org/x/exp/rand"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
"gonum.org/v1/gonum/stat"
|
|
)
|
|
|
|
// Exponential represents the exponential distribution (https://en.wikipedia.org/wiki/Exponential_distribution).
|
|
type Exponential struct {
|
|
Rate float64
|
|
Src rand.Source
|
|
}
|
|
|
|
// CDF computes the value of the cumulative density function at x.
|
|
func (e Exponential) CDF(x float64) float64 {
|
|
if x < 0 {
|
|
return 0
|
|
}
|
|
return 1 - math.Exp(-e.Rate*x)
|
|
}
|
|
|
|
// ConjugateUpdate updates the parameters of the distribution from the sufficient
|
|
// statistics of a set of samples. The sufficient statistics, suffStat, have been
|
|
// observed with nSamples observations. The prior values of the distribution are those
|
|
// currently in the distribution, and have been observed with priorStrength samples.
|
|
//
|
|
// For the exponential distribution, the sufficient statistic is the inverse of
|
|
// the mean of the samples.
|
|
// The prior is having seen priorStrength[0] samples with inverse mean Exponential.Rate
|
|
// As a result of this function, Exponential.Rate is updated based on the weighted
|
|
// samples, and priorStrength is modified to include the new number of samples observed.
|
|
//
|
|
// This function panics if len(suffStat) != 1 or len(priorStrength) != 1.
|
|
func (e *Exponential) ConjugateUpdate(suffStat []float64, nSamples float64, priorStrength []float64) {
|
|
if len(suffStat) != 1 {
|
|
panic("exponential: incorrect suffStat length")
|
|
}
|
|
if len(priorStrength) != 1 {
|
|
panic("exponential: incorrect priorStrength length")
|
|
}
|
|
|
|
totalSamples := nSamples + priorStrength[0]
|
|
|
|
totalSum := nSamples / suffStat[0]
|
|
if !(priorStrength[0] == 0) {
|
|
totalSum += priorStrength[0] / e.Rate
|
|
}
|
|
e.Rate = totalSamples / totalSum
|
|
priorStrength[0] = totalSamples
|
|
}
|
|
|
|
// Entropy returns the entropy of the distribution.
|
|
func (e Exponential) Entropy() float64 {
|
|
return 1 - math.Log(e.Rate)
|
|
}
|
|
|
|
// ExKurtosis returns the excess kurtosis of the distribution.
|
|
func (Exponential) ExKurtosis() float64 {
|
|
return 6
|
|
}
|
|
|
|
// Fit sets the parameters of the probability distribution from the
|
|
// data samples x with relative weights w.
|
|
// If weights is nil, then all the weights are 1.
|
|
// If weights is not nil, then the len(weights) must equal len(samples).
|
|
func (e *Exponential) Fit(samples, weights []float64) {
|
|
suffStat := make([]float64, e.NumSuffStat())
|
|
nSamples := e.SuffStat(suffStat, samples, weights)
|
|
e.ConjugateUpdate(suffStat, nSamples, make([]float64, e.NumSuffStat()))
|
|
}
|
|
|
|
// LogProb computes the natural logarithm of the value of the probability density function at x.
|
|
func (e Exponential) LogProb(x float64) float64 {
|
|
if x < 0 {
|
|
return math.Inf(-1)
|
|
}
|
|
return math.Log(e.Rate) - e.Rate*x
|
|
}
|
|
|
|
// Mean returns the mean of the probability distribution.
|
|
func (e Exponential) Mean() float64 {
|
|
return 1 / e.Rate
|
|
}
|
|
|
|
// Median returns the median of the probability distribution.
|
|
func (e Exponential) Median() float64 {
|
|
return math.Ln2 / e.Rate
|
|
}
|
|
|
|
// Mode returns the mode of the probability distribution.
|
|
func (Exponential) Mode() float64 {
|
|
return 0
|
|
}
|
|
|
|
// NumParameters returns the number of parameters in the distribution.
|
|
func (Exponential) NumParameters() int {
|
|
return 1
|
|
}
|
|
|
|
// NumSuffStat returns the number of sufficient statistics for the distribution.
|
|
func (Exponential) NumSuffStat() int {
|
|
return 1
|
|
}
|
|
|
|
// Prob computes the value of the probability density function at x.
|
|
func (e Exponential) Prob(x float64) float64 {
|
|
return math.Exp(e.LogProb(x))
|
|
}
|
|
|
|
// Quantile returns the inverse of the cumulative probability distribution.
|
|
func (e Exponential) Quantile(p float64) float64 {
|
|
if p < 0 || p > 1 {
|
|
panic(badPercentile)
|
|
}
|
|
return -math.Log(1-p) / e.Rate
|
|
}
|
|
|
|
// Rand returns a random sample drawn from the distribution.
|
|
func (e Exponential) Rand() float64 {
|
|
var rnd float64
|
|
if e.Src == nil {
|
|
rnd = rand.ExpFloat64()
|
|
} else {
|
|
rnd = rand.New(e.Src).ExpFloat64()
|
|
}
|
|
return rnd / e.Rate
|
|
}
|
|
|
|
// Score returns the score function with respect to the parameters of the
|
|
// distribution at the input location x. The score function is the derivative
|
|
// of the log-likelihood at x with respect to the parameters
|
|
// (∂/∂θ) log(p(x;θ))
|
|
// If deriv is non-nil, len(deriv) must equal the number of parameters otherwise
|
|
// Score will panic, and the derivative is stored in-place into deriv. If deriv
|
|
// is nil a new slice will be allocated and returned.
|
|
//
|
|
// The order is [∂LogProb / ∂Rate].
|
|
//
|
|
// For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
|
|
//
|
|
// Special cases:
|
|
// Score(0) = [NaN]
|
|
func (e Exponential) Score(deriv []float64, x float64) []float64 {
|
|
if deriv == nil {
|
|
deriv = make([]float64, e.NumParameters())
|
|
}
|
|
if len(deriv) != e.NumParameters() {
|
|
panic(badLength)
|
|
}
|
|
if x > 0 {
|
|
deriv[0] = 1/e.Rate - x
|
|
return deriv
|
|
}
|
|
if x < 0 {
|
|
deriv[0] = 0
|
|
return deriv
|
|
}
|
|
deriv[0] = math.NaN()
|
|
return deriv
|
|
}
|
|
|
|
// ScoreInput returns the score function with respect to the input of the
|
|
// distribution at the input location specified by x. The score function is the
|
|
// derivative of the log-likelihood
|
|
// (d/dx) log(p(x)) .
|
|
// Special cases:
|
|
// ScoreInput(0) = NaN
|
|
func (e Exponential) ScoreInput(x float64) float64 {
|
|
if x > 0 {
|
|
return -e.Rate
|
|
}
|
|
if x < 0 {
|
|
return 0
|
|
}
|
|
return math.NaN()
|
|
}
|
|
|
|
// Skewness returns the skewness of the distribution.
|
|
func (Exponential) Skewness() float64 {
|
|
return 2
|
|
}
|
|
|
|
// StdDev returns the standard deviation of the probability distribution.
|
|
func (e Exponential) StdDev() float64 {
|
|
return 1 / e.Rate
|
|
}
|
|
|
|
// SuffStat computes the sufficient statistics of set of samples to update
|
|
// the distribution. The sufficient statistics are stored in place, and the
|
|
// effective number of samples are returned.
|
|
//
|
|
// The exponential distribution has one sufficient statistic, the average rate
|
|
// of the samples.
|
|
//
|
|
// If weights is nil, the weights are assumed to be 1, otherwise panics if
|
|
// len(samples) != len(weights). Panics if len(suffStat) != NumSuffStat().
|
|
func (Exponential) SuffStat(suffStat, samples, weights []float64) (nSamples float64) {
|
|
if len(weights) != 0 && len(samples) != len(weights) {
|
|
panic(badLength)
|
|
}
|
|
|
|
if len(suffStat) != (Exponential{}).NumSuffStat() {
|
|
panic(badSuffStat)
|
|
}
|
|
|
|
if len(weights) == 0 {
|
|
nSamples = float64(len(samples))
|
|
} else {
|
|
nSamples = floats.Sum(weights)
|
|
}
|
|
|
|
mean := stat.Mean(samples, weights)
|
|
suffStat[0] = 1 / mean
|
|
return nSamples
|
|
}
|
|
|
|
// Survival returns the survival function (complementary CDF) at x.
|
|
func (e Exponential) Survival(x float64) float64 {
|
|
if x < 0 {
|
|
return 1
|
|
}
|
|
return math.Exp(-e.Rate * x)
|
|
}
|
|
|
|
// setParameters modifies the parameters of the distribution.
|
|
func (e *Exponential) setParameters(p []Parameter) {
|
|
if len(p) != e.NumParameters() {
|
|
panic("exponential: incorrect number of parameters to set")
|
|
}
|
|
if p[0].Name != "Rate" {
|
|
panic("exponential: " + panicNameMismatch)
|
|
}
|
|
e.Rate = p[0].Value
|
|
}
|
|
|
|
// Variance returns the variance of the probability distribution.
|
|
func (e Exponential) Variance() float64 {
|
|
return 1 / (e.Rate * e.Rate)
|
|
}
|
|
|
|
// parameters returns the parameters of the distribution.
|
|
func (e Exponential) parameters(p []Parameter) []Parameter {
|
|
nParam := e.NumParameters()
|
|
if p == nil {
|
|
p = make([]Parameter, nParam)
|
|
} else if len(p) != nParam {
|
|
panic("exponential: improper parameter length")
|
|
}
|
|
p[0].Name = "Rate"
|
|
p[0].Value = e.Rate
|
|
return p
|
|
}
|