// Copyright ©2014 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distuv import ( "math" "golang.org/x/exp/rand" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/stat" ) // Exponential represents the exponential distribution (https://en.wikipedia.org/wiki/Exponential_distribution). type Exponential struct { Rate float64 Src rand.Source } // CDF computes the value of the cumulative density function at x. func (e Exponential) CDF(x float64) float64 { if x < 0 { return 0 } return 1 - math.Exp(-e.Rate*x) } // ConjugateUpdate updates the parameters of the distribution from the sufficient // statistics of a set of samples. The sufficient statistics, suffStat, have been // observed with nSamples observations. The prior values of the distribution are those // currently in the distribution, and have been observed with priorStrength samples. // // For the exponential distribution, the sufficient statistic is the inverse of // the mean of the samples. // The prior is having seen priorStrength[0] samples with inverse mean Exponential.Rate // As a result of this function, Exponential.Rate is updated based on the weighted // samples, and priorStrength is modified to include the new number of samples observed. // // This function panics if len(suffStat) != 1 or len(priorStrength) != 1. func (e *Exponential) ConjugateUpdate(suffStat []float64, nSamples float64, priorStrength []float64) { if len(suffStat) != 1 { panic("exponential: incorrect suffStat length") } if len(priorStrength) != 1 { panic("exponential: incorrect priorStrength length") } totalSamples := nSamples + priorStrength[0] totalSum := nSamples / suffStat[0] if !(priorStrength[0] == 0) { totalSum += priorStrength[0] / e.Rate } e.Rate = totalSamples / totalSum priorStrength[0] = totalSamples } // Entropy returns the entropy of the distribution. func (e Exponential) Entropy() float64 { return 1 - math.Log(e.Rate) } // ExKurtosis returns the excess kurtosis of the distribution. func (Exponential) ExKurtosis() float64 { return 6 } // Fit sets the parameters of the probability distribution from the // data samples x with relative weights w. // If weights is nil, then all the weights are 1. // If weights is not nil, then the len(weights) must equal len(samples). func (e *Exponential) Fit(samples, weights []float64) { suffStat := make([]float64, e.NumSuffStat()) nSamples := e.SuffStat(suffStat, samples, weights) e.ConjugateUpdate(suffStat, nSamples, make([]float64, e.NumSuffStat())) } // LogProb computes the natural logarithm of the value of the probability density function at x. func (e Exponential) LogProb(x float64) float64 { if x < 0 { return math.Inf(-1) } return math.Log(e.Rate) - e.Rate*x } // Mean returns the mean of the probability distribution. func (e Exponential) Mean() float64 { return 1 / e.Rate } // Median returns the median of the probability distribution. func (e Exponential) Median() float64 { return math.Ln2 / e.Rate } // Mode returns the mode of the probability distribution. func (Exponential) Mode() float64 { return 0 } // NumParameters returns the number of parameters in the distribution. func (Exponential) NumParameters() int { return 1 } // NumSuffStat returns the number of sufficient statistics for the distribution. func (Exponential) NumSuffStat() int { return 1 } // Prob computes the value of the probability density function at x. func (e Exponential) Prob(x float64) float64 { return math.Exp(e.LogProb(x)) } // Quantile returns the inverse of the cumulative probability distribution. func (e Exponential) Quantile(p float64) float64 { if p < 0 || p > 1 { panic(badPercentile) } return -math.Log(1-p) / e.Rate } // Rand returns a random sample drawn from the distribution. func (e Exponential) Rand() float64 { var rnd float64 if e.Src == nil { rnd = rand.ExpFloat64() } else { rnd = rand.New(e.Src).ExpFloat64() } return rnd / e.Rate } // Score returns the score function with respect to the parameters of the // distribution at the input location x. The score function is the derivative // of the log-likelihood at x with respect to the parameters // (∂/∂θ) log(p(x;θ)) // If deriv is non-nil, len(deriv) must equal the number of parameters otherwise // Score will panic, and the derivative is stored in-place into deriv. If deriv // is nil a new slice will be allocated and returned. // // The order is [∂LogProb / ∂Rate]. // // For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29. // // Special cases: // Score(0) = [NaN] func (e Exponential) Score(deriv []float64, x float64) []float64 { if deriv == nil { deriv = make([]float64, e.NumParameters()) } if len(deriv) != e.NumParameters() { panic(badLength) } if x > 0 { deriv[0] = 1/e.Rate - x return deriv } if x < 0 { deriv[0] = 0 return deriv } deriv[0] = math.NaN() return deriv } // ScoreInput returns the score function with respect to the input of the // distribution at the input location specified by x. The score function is the // derivative of the log-likelihood // (d/dx) log(p(x)) . // Special cases: // ScoreInput(0) = NaN func (e Exponential) ScoreInput(x float64) float64 { if x > 0 { return -e.Rate } if x < 0 { return 0 } return math.NaN() } // Skewness returns the skewness of the distribution. func (Exponential) Skewness() float64 { return 2 } // StdDev returns the standard deviation of the probability distribution. func (e Exponential) StdDev() float64 { return 1 / e.Rate } // SuffStat computes the sufficient statistics of set of samples to update // the distribution. The sufficient statistics are stored in place, and the // effective number of samples are returned. // // The exponential distribution has one sufficient statistic, the average rate // of the samples. // // If weights is nil, the weights are assumed to be 1, otherwise panics if // len(samples) != len(weights). Panics if len(suffStat) != NumSuffStat(). func (Exponential) SuffStat(suffStat, samples, weights []float64) (nSamples float64) { if len(weights) != 0 && len(samples) != len(weights) { panic(badLength) } if len(suffStat) != (Exponential{}).NumSuffStat() { panic(badSuffStat) } if len(weights) == 0 { nSamples = float64(len(samples)) } else { nSamples = floats.Sum(weights) } mean := stat.Mean(samples, weights) suffStat[0] = 1 / mean return nSamples } // Survival returns the survival function (complementary CDF) at x. func (e Exponential) Survival(x float64) float64 { if x < 0 { return 1 } return math.Exp(-e.Rate * x) } // setParameters modifies the parameters of the distribution. func (e *Exponential) setParameters(p []Parameter) { if len(p) != e.NumParameters() { panic("exponential: incorrect number of parameters to set") } if p[0].Name != "Rate" { panic("exponential: " + panicNameMismatch) } e.Rate = p[0].Value } // Variance returns the variance of the probability distribution. func (e Exponential) Variance() float64 { return 1 / (e.Rate * e.Rate) } // parameters returns the parameters of the distribution. func (e Exponential) parameters(p []Parameter) []Parameter { nParam := e.NumParameters() if p == nil { p = make([]Parameter, nParam) } else if len(p) != nParam { panic("exponential: improper parameter length") } p[0].Name = "Rate" p[0].Value = e.Rate return p }