Files
gonum/stat/distmv/statdist.go
Brendan Tracey ee7a7204dd stat/distuv: Add Bhattacharyya and Hellinger distances for Beta and N… (#514)
* stat/distuv: Add Bhattacharyya and Hellinger distances for Beta and Normal distributions
2018-06-05 16:44:52 -06:00

353 lines
12 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/mathext"
"gonum.org/v1/gonum/stat"
)
// Bhattacharyya is a type for computing the Bhattacharyya distance between
// probability distributions.
//
// The Bhattacharyya distance is defined as
// D_B = -ln(BC(l,r))
// BC = \int_-∞^∞ (p(x)q(x))^(1/2) dx
// Where BC is known as the Bhattacharyya coefficient.
// The Bhattacharyya distance is related to the Hellinger distance by
// H(l,r) = sqrt(1-BC(l,r))
// For more information, see
// https://en.wikipedia.org/wiki/Bhattacharyya_distance
type Bhattacharyya struct{}
// DistNormal computes the Bhattacharyya distance between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
//
// For Normal distributions, the Bhattacharyya distance is
// Σ = (Σ_l + Σ_r)/2
// D_B = (1/8)*(μ_l - μ_r)^T*Σ^-1*(μ_l - μ_r) + (1/2)*ln(det(Σ)/(det(Σ_l)*det(Σ_r))^(1/2))
func (Bhattacharyya) DistNormal(l, r *Normal) float64 {
dim := l.Dim()
if dim != r.Dim() {
panic(badSizeMismatch)
}
var sigma mat.SymDense
sigma.AddSym(&l.sigma, &r.sigma)
sigma.ScaleSym(0.5, &sigma)
var chol mat.Cholesky
chol.Factorize(&sigma)
mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &chol)
mahalanobisSq := mahalanobis * mahalanobis
dl := l.chol.LogDet()
dr := r.chol.LogDet()
ds := chol.LogDet()
return 0.125*mahalanobisSq + 0.5*ds - 0.25*dl - 0.25*dr
}
// DistUniform computes the Bhattacharyya distance between uniform distributions l and r.
// The dimensions of the input distributions must match or DistUniform will panic.
func (Bhattacharyya) DistUniform(l, r *Uniform) float64 {
if len(l.bounds) != len(r.bounds) {
panic(badSizeMismatch)
}
// BC = \int \sqrt(p(x)q(x)), which for uniform distributions is a constant
// over the volume where both distributions have positive probability.
// Compute the overlap and the value of sqrt(p(x)q(x)). The entropy is the
// negative log probability of the distribution (use instead of LogProb so
// it is not necessary to construct an x value).
//
// BC = volume * sqrt(p(x)q(x))
// logBC = log(volume) + 0.5*(logP + logQ)
// D_B = -logBC
return -unifLogVolOverlap(l.bounds, r.bounds) + 0.5*(l.Entropy()+r.Entropy())
}
// unifLogVolOverlap computes the log of the volume of the hyper-rectangle where
// both uniform distributions have positive probability.
func unifLogVolOverlap(b1, b2 []Bound) float64 {
var logVolOverlap float64
for dim, v1 := range b1 {
v2 := b2[dim]
// If the surfaces don't overlap, then the volume is 0
if v1.Max <= v2.Min || v2.Max <= v1.Min {
return math.Inf(-1)
}
vol := math.Min(v1.Max, v2.Max) - math.Max(v1.Min, v2.Min)
logVolOverlap += math.Log(vol)
}
return logVolOverlap
}
// CrossEntropy is a type for computing the cross-entropy between probability
// distributions.
//
// The cross-entropy is defined as
// - \int_x l(x) log(r(x)) dx = KL(l || r) + H(l)
// where KL is the Kullback-Leibler divergence and H is the entropy.
// For more information, see
// https://en.wikipedia.org/wiki/Cross_entropy
type CrossEntropy struct{}
// DistNormal returns the cross-entropy between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
func (CrossEntropy) DistNormal(l, r *Normal) float64 {
if l.Dim() != r.Dim() {
panic(badSizeMismatch)
}
kl := KullbackLeibler{}.DistNormal(l, r)
return kl + l.Entropy()
}
// Hellinger is a type for computing the Hellinger distance between probability
// distributions.
//
// The Hellinger distance is defined as
// H^2(l,r) = 1/2 * int_x (\sqrt(l(x)) - \sqrt(r(x)))^2 dx
// and is bounded between 0 and 1. Note the above formula defines the squared
// Hellinger distance, while this returns the Hellinger distance itself.
// The Hellinger distance is related to the Bhattacharyya distance by
// H^2 = 1 - exp(-D_B)
// For more information, see
// https://en.wikipedia.org/wiki/Hellinger_distance
type Hellinger struct{}
// DistNormal returns the Hellinger distance between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
//
// See the documentation of Bhattacharyya.DistNormal for the formula for Normal
// distributions.
func (Hellinger) DistNormal(l, r *Normal) float64 {
if l.Dim() != r.Dim() {
panic(badSizeMismatch)
}
db := Bhattacharyya{}.DistNormal(l, r)
bc := math.Exp(-db)
return math.Sqrt(1 - bc)
}
// KullbackLeibler is a type for computing the Kullback-Leibler divergence from l to r.
//
// The Kullback-Leibler divergence is defined as
// D_KL(l || r ) = \int_x p(x) log(p(x)/q(x)) dx
// Note that the Kullback-Leibler divergence is not symmetric with respect to
// the order of the input arguments.
type KullbackLeibler struct{}
// DistDirichlet returns the Kullback-Leibler divergence between Dirichlet
// distributions l and r. The dimensions of the input distributions must match
// or DistDirichlet will panic.
//
// For two Dirichlet distributions, the KL divergence is computed as
// D_KL(l || r) = log Γ(α_0_l) - \sum_i log Γ(α_i_l) - log Γ(α_0_r) + \sum_i log Γ(α_i_r)
// + \sum_i (α_i_l - α_i_r)(ψ(α_i_l)- ψ(α_0_l))
// Where Γ is the gamma function, ψ is the digamma function, and α_0 is the
// sum of the Dirichlet parameters.
func (KullbackLeibler) DistDirichlet(l, r *Dirichlet) float64 {
// http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions/
if l.Dim() != r.Dim() {
panic(badSizeMismatch)
}
l0, _ := math.Lgamma(l.sumAlpha)
r0, _ := math.Lgamma(r.sumAlpha)
dl := mathext.Digamma(l.sumAlpha)
var l1, r1, c float64
for i, al := range l.alpha {
ar := r.alpha[i]
vl, _ := math.Lgamma(al)
l1 += vl
vr, _ := math.Lgamma(ar)
r1 += vr
c += (al - ar) * (mathext.Digamma(al) - dl)
}
return l0 - l1 - r0 + r1 + c
}
// DistNormal returns the KullbackLeibler divergence between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
//
// For two normal distributions, the KL divergence is computed as
// D_KL(l || r) = 0.5*[ln(|Σ_r|) - ln(|Σ_l|) + (μ_l - μ_r)^T*Σ_r^-1*(μ_l - μ_r) + tr(Σ_r^-1*Σ_l)-d]
func (KullbackLeibler) DistNormal(l, r *Normal) float64 {
dim := l.Dim()
if dim != r.Dim() {
panic(badSizeMismatch)
}
mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &r.chol)
mahalanobisSq := mahalanobis * mahalanobis
// TODO(btracey): Optimize where there is a SolveCholeskySym
// TODO(btracey): There may be a more efficient way to just compute the trace
// Compute tr(Σ_r^-1*Σ_l) using the fact that Σ_l = U^T * U
var u mat.TriDense
l.chol.UTo(&u)
var m mat.Dense
err := r.chol.Solve(&m, u.T())
if err != nil {
return math.NaN()
}
m.Mul(&m, &u)
tr := mat.Trace(&m)
return r.logSqrtDet - l.logSqrtDet + 0.5*(mahalanobisSq+tr-float64(l.dim))
}
// DistUniform returns the KullbackLeibler divergence between uniform distributions
// l and r. The dimensions of the input distributions must match or DistUniform
// will panic.
func (KullbackLeibler) DistUniform(l, r *Uniform) float64 {
bl := l.Bounds(nil)
br := r.Bounds(nil)
if len(bl) != len(br) {
panic(badSizeMismatch)
}
// The KL is ∞ if l is not completely contained within r, because then
// r(x) is zero when l(x) is non-zero for some x.
contained := true
for i, v := range bl {
if v.Min < br[i].Min || br[i].Max < v.Max {
contained = false
break
}
}
if !contained {
return math.Inf(1)
}
// The KL divergence is finite.
//
// KL defines 0*ln(0) = 0, so there is no contribution to KL where l(x) = 0.
// Inside the region, l(x) and r(x) are constant (uniform distribution), and
// this constant is integrated over l(x), which integrates out to one.
// The entropy is -log(p(x)).
logPx := -l.Entropy()
logQx := -r.Entropy()
return logPx - logQx
}
// Renyi is a type for computing the Rényi divergence of order α from l to r.
//
// The Rényi divergence with α > 0, α ≠ 1 is defined as
// D_α(l || r) = 1/(α-1) log(\int_-∞^∞ l(x)^α r(x)^(1-α)dx)
// The Rényi divergence has special forms for α = 0 and α = 1. This type does
// not implement α = ∞. For α = 0,
// D_0(l || r) = -log \int_-∞^∞ r(x)1{p(x)>0} dx
// that is, the negative log probability under r(x) that l(x) > 0.
// When α = 1, the Rényi divergence is equal to the Kullback-Leibler divergence.
// The Rényi divergence is also equal to half the Bhattacharyya distance when α = 0.5.
//
// The parameter α must be in 0 ≤ α < ∞ or the distance functions will panic.
type Renyi struct {
Alpha float64
}
// DistNormal returns the Rényi divergence between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
//
// For two normal distributions, the Rényi divergence is computed as
// Σ_α = (1-α) Σ_l + αΣ_r
// D_α(l||r) = α/2 * (μ_l - μ_r)'*Σ_α^-1*(μ_l - μ_r) + 1/(2(α-1))*ln(|Σ_λ|/(|Σ_l|^(1-α)*|Σ_r|^α))
//
// For a more nicely formatted version of the formula, see Eq. 15 of
// Kolchinsky, Artemy, and Brendan D. Tracey. "Estimating Mixture Entropy
// with Pairwise Distances." arXiv preprint arXiv:1706.02419 (2017).
// Note that the this formula is for Chernoff divergence, which differs from
// Rényi divergence by a factor of 1-α. Also be aware that most sources in
// the literature report this formula incorrectly.
func (renyi Renyi) DistNormal(l, r *Normal) float64 {
if renyi.Alpha < 0 {
panic("renyi: alpha < 0")
}
dim := l.Dim()
if dim != r.Dim() {
panic(badSizeMismatch)
}
if renyi.Alpha == 0 {
return 0
}
if renyi.Alpha == 1 {
return KullbackLeibler{}.DistNormal(l, r)
}
logDetL := l.chol.LogDet()
logDetR := r.chol.LogDet()
// Σ_α = (1-α)Σ_l + αΣ_r.
sigA := mat.NewSymDense(dim, nil)
for i := 0; i < dim; i++ {
for j := i; j < dim; j++ {
v := (1-renyi.Alpha)*l.sigma.At(i, j) + renyi.Alpha*r.sigma.At(i, j)
sigA.SetSym(i, j, v)
}
}
var chol mat.Cholesky
ok := chol.Factorize(sigA)
if !ok {
return math.NaN()
}
logDetA := chol.LogDet()
mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &chol)
mahalanobisSq := mahalanobis * mahalanobis
return (renyi.Alpha/2)*mahalanobisSq + 1/(2*(1-renyi.Alpha))*(logDetA-(1-renyi.Alpha)*logDetL-renyi.Alpha*logDetR)
}
// Wasserstein is a type for computing the Wasserstein distance between two
// probability distributions.
//
// The Wasserstein distance is defined as
// W(l,r) := inf 𝔼(||X-Y||_2^2)^1/2
// For more information, see
// https://en.wikipedia.org/wiki/Wasserstein_metric
type Wasserstein struct{}
// DistNormal returns the Wasserstein distance between normal distributions l and r.
// The dimensions of the input distributions must match or DistNormal will panic.
//
// The Wasserstein distance for Normal distributions is
// d^2 = ||m_l - m_r||_2^2 + Tr(Σ_l + Σ_r - 2(Σ_l^(1/2)*Σ_r*Σ_l^(1/2))^(1/2))
// For more information, see
// http://djalil.chafai.net/blog/2010/04/30/wasserstein-distance-between-two-gaussians/
func (Wasserstein) DistNormal(l, r *Normal) float64 {
dim := l.Dim()
if dim != r.Dim() {
panic(badSizeMismatch)
}
d := floats.Distance(l.mu, r.mu, 2)
d = d * d
// Compute Σ_l^(1/2)
var ssl mat.SymDense
ssl.PowPSD(&l.sigma, 0.5)
// Compute Σ_l^(1/2)*Σ_r*Σ_l^(1/2)
var mean mat.Dense
mean.Mul(&ssl, &r.sigma)
mean.Mul(&mean, &ssl)
// Reinterpret as symdense, and take Σ^(1/2)
meanSym := mat.NewSymDense(dim, mean.RawMatrix().Data)
ssl.PowPSD(meanSym, 0.5)
tr := mat.Trace(&r.sigma)
tl := mat.Trace(&l.sigma)
tm := mat.Trace(&ssl)
return d + tl + tr - 2*tm
}