// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distmv import ( "math" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/mathext" "gonum.org/v1/gonum/stat" ) // Bhattacharyya is a type for computing the Bhattacharyya distance between // probability distributions. // // The Bhattacharyya distance is defined as // D_B = -ln(BC(l,r)) // BC = \int_-∞^∞ (p(x)q(x))^(1/2) dx // Where BC is known as the Bhattacharyya coefficient. // The Bhattacharyya distance is related to the Hellinger distance by // H(l,r) = sqrt(1-BC(l,r)) // For more information, see // https://en.wikipedia.org/wiki/Bhattacharyya_distance type Bhattacharyya struct{} // DistNormal computes the Bhattacharyya distance between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. // // For Normal distributions, the Bhattacharyya distance is // Σ = (Σ_l + Σ_r)/2 // D_B = (1/8)*(μ_l - μ_r)^T*Σ^-1*(μ_l - μ_r) + (1/2)*ln(det(Σ)/(det(Σ_l)*det(Σ_r))^(1/2)) func (Bhattacharyya) DistNormal(l, r *Normal) float64 { dim := l.Dim() if dim != r.Dim() { panic(badSizeMismatch) } var sigma mat.SymDense sigma.AddSym(&l.sigma, &r.sigma) sigma.ScaleSym(0.5, &sigma) var chol mat.Cholesky chol.Factorize(&sigma) mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &chol) mahalanobisSq := mahalanobis * mahalanobis dl := l.chol.LogDet() dr := r.chol.LogDet() ds := chol.LogDet() return 0.125*mahalanobisSq + 0.5*ds - 0.25*dl - 0.25*dr } // DistUniform computes the Bhattacharyya distance between uniform distributions l and r. // The dimensions of the input distributions must match or DistUniform will panic. func (Bhattacharyya) DistUniform(l, r *Uniform) float64 { if len(l.bounds) != len(r.bounds) { panic(badSizeMismatch) } // BC = \int \sqrt(p(x)q(x)), which for uniform distributions is a constant // over the volume where both distributions have positive probability. // Compute the overlap and the value of sqrt(p(x)q(x)). The entropy is the // negative log probability of the distribution (use instead of LogProb so // it is not necessary to construct an x value). // // BC = volume * sqrt(p(x)q(x)) // logBC = log(volume) + 0.5*(logP + logQ) // D_B = -logBC return -unifLogVolOverlap(l.bounds, r.bounds) + 0.5*(l.Entropy()+r.Entropy()) } // unifLogVolOverlap computes the log of the volume of the hyper-rectangle where // both uniform distributions have positive probability. func unifLogVolOverlap(b1, b2 []Bound) float64 { var logVolOverlap float64 for dim, v1 := range b1 { v2 := b2[dim] // If the surfaces don't overlap, then the volume is 0 if v1.Max <= v2.Min || v2.Max <= v1.Min { return math.Inf(-1) } vol := math.Min(v1.Max, v2.Max) - math.Max(v1.Min, v2.Min) logVolOverlap += math.Log(vol) } return logVolOverlap } // CrossEntropy is a type for computing the cross-entropy between probability // distributions. // // The cross-entropy is defined as // - \int_x l(x) log(r(x)) dx = KL(l || r) + H(l) // where KL is the Kullback-Leibler divergence and H is the entropy. // For more information, see // https://en.wikipedia.org/wiki/Cross_entropy type CrossEntropy struct{} // DistNormal returns the cross-entropy between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. func (CrossEntropy) DistNormal(l, r *Normal) float64 { if l.Dim() != r.Dim() { panic(badSizeMismatch) } kl := KullbackLeibler{}.DistNormal(l, r) return kl + l.Entropy() } // Hellinger is a type for computing the Hellinger distance between probability // distributions. // // The Hellinger distance is defined as // H^2(l,r) = 1/2 * int_x (\sqrt(l(x)) - \sqrt(r(x)))^2 dx // and is bounded between 0 and 1. Note the above formula defines the squared // Hellinger distance, while this returns the Hellinger distance itself. // The Hellinger distance is related to the Bhattacharyya distance by // H^2 = 1 - exp(-D_B) // For more information, see // https://en.wikipedia.org/wiki/Hellinger_distance type Hellinger struct{} // DistNormal returns the Hellinger distance between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. // // See the documentation of Bhattacharyya.DistNormal for the formula for Normal // distributions. func (Hellinger) DistNormal(l, r *Normal) float64 { if l.Dim() != r.Dim() { panic(badSizeMismatch) } db := Bhattacharyya{}.DistNormal(l, r) bc := math.Exp(-db) return math.Sqrt(1 - bc) } // KullbackLeibler is a type for computing the Kullback-Leibler divergence from l to r. // // The Kullback-Leibler divergence is defined as // D_KL(l || r ) = \int_x p(x) log(p(x)/q(x)) dx // Note that the Kullback-Leibler divergence is not symmetric with respect to // the order of the input arguments. type KullbackLeibler struct{} // DistDirichlet returns the Kullback-Leibler divergence between Dirichlet // distributions l and r. The dimensions of the input distributions must match // or DistDirichlet will panic. // // For two Dirichlet distributions, the KL divergence is computed as // D_KL(l || r) = log Γ(α_0_l) - \sum_i log Γ(α_i_l) - log Γ(α_0_r) + \sum_i log Γ(α_i_r) // + \sum_i (α_i_l - α_i_r)(ψ(α_i_l)- ψ(α_0_l)) // Where Γ is the gamma function, ψ is the digamma function, and α_0 is the // sum of the Dirichlet parameters. func (KullbackLeibler) DistDirichlet(l, r *Dirichlet) float64 { // http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions/ if l.Dim() != r.Dim() { panic(badSizeMismatch) } l0, _ := math.Lgamma(l.sumAlpha) r0, _ := math.Lgamma(r.sumAlpha) dl := mathext.Digamma(l.sumAlpha) var l1, r1, c float64 for i, al := range l.alpha { ar := r.alpha[i] vl, _ := math.Lgamma(al) l1 += vl vr, _ := math.Lgamma(ar) r1 += vr c += (al - ar) * (mathext.Digamma(al) - dl) } return l0 - l1 - r0 + r1 + c } // DistNormal returns the KullbackLeibler divergence between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. // // For two normal distributions, the KL divergence is computed as // D_KL(l || r) = 0.5*[ln(|Σ_r|) - ln(|Σ_l|) + (μ_l - μ_r)^T*Σ_r^-1*(μ_l - μ_r) + tr(Σ_r^-1*Σ_l)-d] func (KullbackLeibler) DistNormal(l, r *Normal) float64 { dim := l.Dim() if dim != r.Dim() { panic(badSizeMismatch) } mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &r.chol) mahalanobisSq := mahalanobis * mahalanobis // TODO(btracey): Optimize where there is a SolveCholeskySym // TODO(btracey): There may be a more efficient way to just compute the trace // Compute tr(Σ_r^-1*Σ_l) using the fact that Σ_l = U^T * U var u mat.TriDense l.chol.UTo(&u) var m mat.Dense err := r.chol.Solve(&m, u.T()) if err != nil { return math.NaN() } m.Mul(&m, &u) tr := mat.Trace(&m) return r.logSqrtDet - l.logSqrtDet + 0.5*(mahalanobisSq+tr-float64(l.dim)) } // DistUniform returns the KullbackLeibler divergence between uniform distributions // l and r. The dimensions of the input distributions must match or DistUniform // will panic. func (KullbackLeibler) DistUniform(l, r *Uniform) float64 { bl := l.Bounds(nil) br := r.Bounds(nil) if len(bl) != len(br) { panic(badSizeMismatch) } // The KL is ∞ if l is not completely contained within r, because then // r(x) is zero when l(x) is non-zero for some x. contained := true for i, v := range bl { if v.Min < br[i].Min || br[i].Max < v.Max { contained = false break } } if !contained { return math.Inf(1) } // The KL divergence is finite. // // KL defines 0*ln(0) = 0, so there is no contribution to KL where l(x) = 0. // Inside the region, l(x) and r(x) are constant (uniform distribution), and // this constant is integrated over l(x), which integrates out to one. // The entropy is -log(p(x)). logPx := -l.Entropy() logQx := -r.Entropy() return logPx - logQx } // Renyi is a type for computing the Rényi divergence of order α from l to r. // // The Rényi divergence with α > 0, α ≠ 1 is defined as // D_α(l || r) = 1/(α-1) log(\int_-∞^∞ l(x)^α r(x)^(1-α)dx) // The Rényi divergence has special forms for α = 0 and α = 1. This type does // not implement α = ∞. For α = 0, // D_0(l || r) = -log \int_-∞^∞ r(x)1{p(x)>0} dx // that is, the negative log probability under r(x) that l(x) > 0. // When α = 1, the Rényi divergence is equal to the Kullback-Leibler divergence. // The Rényi divergence is also equal to half the Bhattacharyya distance when α = 0.5. // // The parameter α must be in 0 ≤ α < ∞ or the distance functions will panic. type Renyi struct { Alpha float64 } // DistNormal returns the Rényi divergence between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. // // For two normal distributions, the Rényi divergence is computed as // Σ_α = (1-α) Σ_l + αΣ_r // D_α(l||r) = α/2 * (μ_l - μ_r)'*Σ_α^-1*(μ_l - μ_r) + 1/(2(α-1))*ln(|Σ_λ|/(|Σ_l|^(1-α)*|Σ_r|^α)) // // For a more nicely formatted version of the formula, see Eq. 15 of // Kolchinsky, Artemy, and Brendan D. Tracey. "Estimating Mixture Entropy // with Pairwise Distances." arXiv preprint arXiv:1706.02419 (2017). // Note that the this formula is for Chernoff divergence, which differs from // Rényi divergence by a factor of 1-α. Also be aware that most sources in // the literature report this formula incorrectly. func (renyi Renyi) DistNormal(l, r *Normal) float64 { if renyi.Alpha < 0 { panic("renyi: alpha < 0") } dim := l.Dim() if dim != r.Dim() { panic(badSizeMismatch) } if renyi.Alpha == 0 { return 0 } if renyi.Alpha == 1 { return KullbackLeibler{}.DistNormal(l, r) } logDetL := l.chol.LogDet() logDetR := r.chol.LogDet() // Σ_α = (1-α)Σ_l + αΣ_r. sigA := mat.NewSymDense(dim, nil) for i := 0; i < dim; i++ { for j := i; j < dim; j++ { v := (1-renyi.Alpha)*l.sigma.At(i, j) + renyi.Alpha*r.sigma.At(i, j) sigA.SetSym(i, j, v) } } var chol mat.Cholesky ok := chol.Factorize(sigA) if !ok { return math.NaN() } logDetA := chol.LogDet() mahalanobis := stat.Mahalanobis(mat.NewVecDense(dim, l.mu), mat.NewVecDense(dim, r.mu), &chol) mahalanobisSq := mahalanobis * mahalanobis return (renyi.Alpha/2)*mahalanobisSq + 1/(2*(1-renyi.Alpha))*(logDetA-(1-renyi.Alpha)*logDetL-renyi.Alpha*logDetR) } // Wasserstein is a type for computing the Wasserstein distance between two // probability distributions. // // The Wasserstein distance is defined as // W(l,r) := inf 𝔼(||X-Y||_2^2)^1/2 // For more information, see // https://en.wikipedia.org/wiki/Wasserstein_metric type Wasserstein struct{} // DistNormal returns the Wasserstein distance between normal distributions l and r. // The dimensions of the input distributions must match or DistNormal will panic. // // The Wasserstein distance for Normal distributions is // d^2 = ||m_l - m_r||_2^2 + Tr(Σ_l + Σ_r - 2(Σ_l^(1/2)*Σ_r*Σ_l^(1/2))^(1/2)) // For more information, see // http://djalil.chafai.net/blog/2010/04/30/wasserstein-distance-between-two-gaussians/ func (Wasserstein) DistNormal(l, r *Normal) float64 { dim := l.Dim() if dim != r.Dim() { panic(badSizeMismatch) } d := floats.Distance(l.mu, r.mu, 2) d = d * d // Compute Σ_l^(1/2) var ssl mat.SymDense ssl.PowPSD(&l.sigma, 0.5) // Compute Σ_l^(1/2)*Σ_r*Σ_l^(1/2) var mean mat.Dense mean.Mul(&ssl, &r.sigma) mean.Mul(&mean, &ssl) // Reinterpret as symdense, and take Σ^(1/2) meanSym := mat.NewSymDense(dim, mean.RawMatrix().Data) ssl.PowPSD(meanSym, 0.5) tr := mat.Trace(&r.sigma) tl := mat.Trace(&l.sigma) tm := mat.Trace(&ssl) return d + tl + tr - 2*tm }