Files
gonum/internal/rand/rand_test.go
Dan Kortschak cf3307fa63 all: partially migrate to math/rand/v2
This is not intended to be a completed transition since it leaves the
libraries unusable to external client code, but rather as a step towards
use of math/rand/v2. This initial step allows repair of sequence change
failures without having to worry about API difference.
2025-02-01 22:18:04 +10:30

369 lines
9.5 KiB
Go

// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rand
import (
"bytes"
"errors"
"fmt"
"io"
"math"
"os"
"runtime"
"strings"
"testing"
"testing/iotest"
)
const (
numTestSamples = 10000
)
type statsResults struct {
mean float64
stddev float64
closeEnough float64
maxError float64
}
func nearEqual(a, b, closeEnough, maxError float64) bool {
absDiff := math.Abs(a - b)
if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
return true
}
return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}
var testSeeds = []uint64{1, 1754801282, 1698661970, 1550503961}
// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error {
if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
return nil
}
func getStatsResults(samples []float64) *statsResults {
res := new(statsResults)
var sum, squaresum float64
for _, s := range samples {
sum += s
squaresum += s * s
}
res.mean = sum / float64(len(samples))
res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
return res
}
func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
t.Helper()
actual := getStatsResults(samples)
err := actual.checkSimilarDistribution(expected)
if err != nil {
t.Error(err)
}
}
func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
t.Helper()
chunk := len(samples) / nslices
for i := 0; i < nslices; i++ {
low := i * chunk
var high int
if i == nslices-1 {
high = len(samples) - 1
} else {
high = (i + 1) * chunk
}
checkSampleDistribution(t, samples[low:high], expected)
}
}
//
// Normal distribution tests
//
func generateNormalSamples(nsamples int, mean, stddev float64, seed uint64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.NormFloat64()*stddev + mean
}
return samples
}
func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed uint64) {
//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
samples := generateNormalSamples(nsamples, mean, stddev, seed)
errorScale := max(1.0, stddev) // Error scales with stddev
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardNormalValues(t *testing.T) {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, 0, 1, seed)
}
}
func TestNonStandardNormalValues(t *testing.T) {
sdmax := 1000.0
mmax := 1000.0
if testing.Short() {
sdmax = 5
mmax = 5
}
for sd := 0.5; sd < sdmax; sd *= 2 {
for m := 0.5; m < mmax; m *= 2 {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, m, sd, seed)
if testing.Short() {
break
}
}
}
}
}
//
// Exponential distribution tests
//
func generateExponentialSamples(nsamples int, rate float64, seed uint64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.ExpFloat64() / rate
}
return samples
}
func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed uint64) {
//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed)
mean := 1 / rate
stddev := mean
samples := generateExponentialSamples(nsamples, rate, seed)
errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardExponentialValues(t *testing.T) {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, 1, seed)
}
}
func TestNonStandardExponentialValues(t *testing.T) {
for rate := 0.05; rate < 10; rate *= 2 {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, rate, seed)
if testing.Short() {
break
}
}
}
}
// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if s1[i] != s2[i] {
return i
}
}
return -1
}
// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
return i
}
}
return -1
}
func hasSlowFloatingPoint() bool {
switch runtime.GOARCH {
case "arm":
return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat")
case "mips", "mipsle", "mips64", "mips64le":
// Be conservative and assume that all mips boards
// have emulated floating point.
// TODO: detect what it actually has.
return true
}
return false
}
func TestFloat32(t *testing.T) {
// For issue 6721, the problem came after 7533753 calls, so check 10e6.
num := int(10e6)
// But do the full amount only on builders (not locally).
// But ARM5 floating point emulation is slow (Issue 10749), so
// do less for that builder:
if testing.Short() && hasSlowFloatingPoint() { // TODO: (testenv.Builder() == "" || hasSlowFloatingPoint())
num /= 100 // 1.72 seconds instead of 172 seconds
}
r := New(NewSource(1))
for ct := 0; ct < num; ct++ {
f := r.Float32()
if f >= 1 {
t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
}
}
}
func testReadUniformity(t *testing.T, n int, seed uint64) {
r := New(NewSource(seed))
buf := make([]byte, n)
nRead, err := r.Read(buf)
if err != nil {
t.Errorf("Read err %v", err)
}
if nRead != n {
t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
}
// Expect a uniform distribution of byte values, which lie in [0, 255].
var (
mean = 255.0 / 2
stddev = 256.0 / math.Sqrt(12.0)
errorScale = stddev / math.Sqrt(float64(n))
)
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Cast bytes as floats to use the common distribution-validity checks.
samples := make([]float64, n)
for i, val := range buf {
samples[i] = float64(val)
}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
}
func TestReadUniformity(t *testing.T) {
testBufferSizes := []int{
2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
}
for _, seed := range testSeeds {
for _, n := range testBufferSizes {
testReadUniformity(t, n, seed)
}
}
}
func TestReadEmpty(t *testing.T) {
r := New(NewSource(1))
buf := make([]byte, 0)
n, err := r.Read(buf)
if err != nil {
t.Errorf("Read err into empty buffer; %v", err)
}
if n != 0 {
t.Errorf("Read into empty buffer returned unexpected n of %d", n)
}
}
func TestReadByOneByte(t *testing.T) {
r := New(NewSource(1))
b1 := make([]byte, 100)
_, err := io.ReadFull(iotest.OneByteReader(r), b1)
if err != nil {
t.Errorf("read by one byte: %v", err)
}
r = New(NewSource(1))
b2 := make([]byte, 100)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
}
}
func TestReadSeedReset(t *testing.T) {
r := New(NewSource(42))
b1 := make([]byte, 128)
_, err := r.Read(b1)
if err != nil {
t.Errorf("read: %v", err)
}
r.Seed(42)
b2 := make([]byte, 128)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
}
}
func TestShuffleSmall(t *testing.T) {
// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
r := New(NewSource(1))
for n := 0; n <= 1; n++ {
r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
}
}