// Copyright ©2024 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package rand import ( "bytes" "errors" "fmt" "io" "math" "os" "runtime" "strings" "testing" "testing/iotest" ) const ( numTestSamples = 10000 ) type statsResults struct { mean float64 stddev float64 closeEnough float64 maxError float64 } func nearEqual(a, b, closeEnough, maxError float64) bool { absDiff := math.Abs(a - b) if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. return true } return absDiff/max(math.Abs(a), math.Abs(b)) < maxError } var testSeeds = []uint64{1, 1754801282, 1698661970, 1550503961} // checkSimilarDistribution returns success if the mean and stddev of the // two statsResults are similar. func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error { if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) { s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) { s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } return nil } func getStatsResults(samples []float64) *statsResults { res := new(statsResults) var sum, squaresum float64 for _, s := range samples { sum += s squaresum += s * s } res.mean = sum / float64(len(samples)) res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean) return res } func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { t.Helper() actual := getStatsResults(samples) err := actual.checkSimilarDistribution(expected) if err != nil { t.Error(err) } } func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { t.Helper() chunk := len(samples) / nslices for i := 0; i < nslices; i++ { low := i * chunk var high int if i == nslices-1 { high = len(samples) - 1 } else { high = (i + 1) * chunk } checkSampleDistribution(t, samples[low:high], expected) } } // // Normal distribution tests // func generateNormalSamples(nsamples int, mean, stddev float64, seed uint64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.NormFloat64()*stddev + mean } return samples } func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed uint64) { //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); samples := generateNormalSamples(nsamples, mean, stddev, seed) errorScale := max(1.0, stddev) // Error scales with stddev expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardNormalValues(t *testing.T) { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, 0, 1, seed) } } func TestNonStandardNormalValues(t *testing.T) { sdmax := 1000.0 mmax := 1000.0 if testing.Short() { sdmax = 5 mmax = 5 } for sd := 0.5; sd < sdmax; sd *= 2 { for m := 0.5; m < mmax; m *= 2 { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, m, sd, seed) if testing.Short() { break } } } } } // // Exponential distribution tests // func generateExponentialSamples(nsamples int, rate float64, seed uint64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.ExpFloat64() / rate } return samples } func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed uint64) { //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed) mean := 1 / rate stddev := mean samples := generateExponentialSamples(nsamples, rate, seed) errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardExponentialValues(t *testing.T) { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, 1, seed) } } func TestNonStandardExponentialValues(t *testing.T) { for rate := 0.05; rate < 10; rate *= 2 { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, rate, seed) if testing.Short() { break } } } } // compareUint32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareUint32Slices(s1, s2 []uint32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if s1[i] != s2[i] { return i } } return -1 } // compareFloat32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareFloat32Slices(s1, s2 []float32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { return i } } return -1 } func hasSlowFloatingPoint() bool { switch runtime.GOARCH { case "arm": return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat") case "mips", "mipsle", "mips64", "mips64le": // Be conservative and assume that all mips boards // have emulated floating point. // TODO: detect what it actually has. return true } return false } func TestFloat32(t *testing.T) { // For issue 6721, the problem came after 7533753 calls, so check 10e6. num := int(10e6) // But do the full amount only on builders (not locally). // But ARM5 floating point emulation is slow (Issue 10749), so // do less for that builder: if testing.Short() && hasSlowFloatingPoint() { // TODO: (testenv.Builder() == "" || hasSlowFloatingPoint()) num /= 100 // 1.72 seconds instead of 172 seconds } r := New(NewSource(1)) for ct := 0; ct < num; ct++ { f := r.Float32() if f >= 1 { t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f) } } } func testReadUniformity(t *testing.T, n int, seed uint64) { r := New(NewSource(seed)) buf := make([]byte, n) nRead, err := r.Read(buf) if err != nil { t.Errorf("Read err %v", err) } if nRead != n { t.Errorf("Read returned unexpected n; %d != %d", nRead, n) } // Expect a uniform distribution of byte values, which lie in [0, 255]. var ( mean = 255.0 / 2 stddev = 256.0 / math.Sqrt(12.0) errorScale = stddev / math.Sqrt(float64(n)) ) expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} // Cast bytes as floats to use the common distribution-validity checks. samples := make([]float64, n) for i, val := range buf { samples[i] = float64(val) } // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) } func TestReadUniformity(t *testing.T) { testBufferSizes := []int{ 2, 4, 7, 64, 1024, 1 << 16, 1 << 20, } for _, seed := range testSeeds { for _, n := range testBufferSizes { testReadUniformity(t, n, seed) } } } func TestReadEmpty(t *testing.T) { r := New(NewSource(1)) buf := make([]byte, 0) n, err := r.Read(buf) if err != nil { t.Errorf("Read err into empty buffer; %v", err) } if n != 0 { t.Errorf("Read into empty buffer returned unexpected n of %d", n) } } func TestReadByOneByte(t *testing.T) { r := New(NewSource(1)) b1 := make([]byte, 100) _, err := io.ReadFull(iotest.OneByteReader(r), b1) if err != nil { t.Errorf("read by one byte: %v", err) } r = New(NewSource(1)) b2 := make([]byte, 100) _, err = r.Read(b2) if err != nil { t.Errorf("read: %v", err) } if !bytes.Equal(b1, b2) { t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2) } } func TestReadSeedReset(t *testing.T) { r := New(NewSource(42)) b1 := make([]byte, 128) _, err := r.Read(b1) if err != nil { t.Errorf("read: %v", err) } r.Seed(42) b2 := make([]byte, 128) _, err = r.Read(b2) if err != nil { t.Errorf("read: %v", err) } if !bytes.Equal(b1, b2) { t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2) } } func TestShuffleSmall(t *testing.T) { // Check that Shuffle allows n=0 and n=1, but that swap is never called for them. r := New(NewSource(1)) for n := 0; n <= 1; n++ { r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) }) } }