Files
gonum/mathext/gamma_inc.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

59 lines
2.0 KiB
Go

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"gonum.org/v1/gonum/mathext/internal/cephes"
)
// GammaIncReg computes the regularized incomplete Gamma integral.
//
// GammaIncReg(a,x) = (1/ Γ(a)) \int_0^x e^{-t} t^{a-1} dt
//
// The input argument a must be positive and x must be non-negative or GammaIncReg
// will panic.
//
// See http://mathworld.wolfram.com/IncompleteGammaFunction.html
// or https://en.wikipedia.org/wiki/Incomplete_gamma_function for more detailed
// information.
func GammaIncReg(a, x float64) float64 {
return cephes.Igam(a, x)
}
// GammaIncRegComp computes the complemented regularized incomplete Gamma integral.
//
// GammaIncRegComp(a,x) = 1 - GammaIncReg(a,x)
// = (1/ Γ(a)) \int_x^\infty e^{-t} t^{a-1} dt
//
// The input argument a must be positive and x must be non-negative or
// GammaIncRegComp will panic.
func GammaIncRegComp(a, x float64) float64 {
return cephes.IgamC(a, x)
}
// GammaIncRegInv computes the inverse of the regularized incomplete Gamma integral. That is,
// it returns the x such that:
//
// GammaIncReg(a, x) = y
//
// The input argument a must be positive and y must be between 0 and 1
// inclusive or GammaIncRegInv will panic. GammaIncRegInv should return a positive
// number, but can return NaN if there is a failure to converge.
func GammaIncRegInv(a, y float64) float64 {
return gammaIncRegInv(a, y)
}
// GammaIncRegCompInv computes the inverse of the complemented regularized incomplete Gamma
// integral. That is, it returns the x such that:
//
// GammaIncRegComp(a, x) = y
//
// The input argument a must be positive and y must be between 0 and 1
// inclusive or GammaIncRegCompInv will panic. GammaIncRegCompInv should return a
// positive number, but can return 0 even with non-zero y due to underflow.
func GammaIncRegCompInv(a, y float64) float64 {
return cephes.IgamI(a, y)
}