// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mathext import ( "gonum.org/v1/gonum/mathext/internal/cephes" ) // GammaIncReg computes the regularized incomplete Gamma integral. // // GammaIncReg(a,x) = (1/ Γ(a)) \int_0^x e^{-t} t^{a-1} dt // // The input argument a must be positive and x must be non-negative or GammaIncReg // will panic. // // See http://mathworld.wolfram.com/IncompleteGammaFunction.html // or https://en.wikipedia.org/wiki/Incomplete_gamma_function for more detailed // information. func GammaIncReg(a, x float64) float64 { return cephes.Igam(a, x) } // GammaIncRegComp computes the complemented regularized incomplete Gamma integral. // // GammaIncRegComp(a,x) = 1 - GammaIncReg(a,x) // = (1/ Γ(a)) \int_x^\infty e^{-t} t^{a-1} dt // // The input argument a must be positive and x must be non-negative or // GammaIncRegComp will panic. func GammaIncRegComp(a, x float64) float64 { return cephes.IgamC(a, x) } // GammaIncRegInv computes the inverse of the regularized incomplete Gamma integral. That is, // it returns the x such that: // // GammaIncReg(a, x) = y // // The input argument a must be positive and y must be between 0 and 1 // inclusive or GammaIncRegInv will panic. GammaIncRegInv should return a positive // number, but can return NaN if there is a failure to converge. func GammaIncRegInv(a, y float64) float64 { return gammaIncRegInv(a, y) } // GammaIncRegCompInv computes the inverse of the complemented regularized incomplete Gamma // integral. That is, it returns the x such that: // // GammaIncRegComp(a, x) = y // // The input argument a must be positive and y must be between 0 and 1 // inclusive or GammaIncRegCompInv will panic. GammaIncRegCompInv should return a // positive number, but can return 0 even with non-zero y due to underflow. func GammaIncRegCompInv(a, y float64) float64 { return cephes.IgamI(a, y) }