Files
gonum/graph/path/johnson_apsp.go
Dan Kortschak 142f1a8c6b graph: make graph analysis routines safe for indeterminate iterators
This is a change in design for the graph.NodesOf family of functions. The
alternative was to provide an equivalent set of non-panicking routines in
graph for internal use. The protection that was intended with the panic
was to panic early rather than late when an indeterminate iterator exhausts
slice index space. I think in hindsight this was an error and we should
let things blow up in that (likely rare) situation.

The majority of changes are in test code. Outside the iterator package, which
is intimately tied to the determined iterator implementations, only one test
now fails if an indeterminate iterator is used, product's Modular extended
sub-graph isomorphism example, which is an algorithm that would have time
complexity issues with large iterators anyway.
2020-07-02 07:47:46 +09:30

199 lines
4.3 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package path
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/simple"
)
// JohnsonAllPaths returns a shortest-path tree for shortest paths in the graph g.
// If the graph does not implement Weighted, UniformCost is used. If a negative cycle
// exists in g, ok will be returned false and paths will not contain valid data.
//
// The time complexity of JohnsonAllPaths is O(|V|.|E|+|V|^2.log|V|).
func JohnsonAllPaths(g graph.Graph) (paths AllShortest, ok bool) {
adjusted := johnsonWeightAdjuster{Graph: g}
if wg, ok := g.(Weighted); ok {
adjusted.weight = wg.Weight
} else {
adjusted.weight = UniformCost(g)
}
paths = newAllShortest(graph.NodesOf(g.Nodes()), false)
var q int64
sign := int64(-1)
for {
// Choose a random node ID until we find
// one that is not in g.
q = sign * rand.Int63()
if _, exists := paths.indexOf[q]; !exists {
break
}
sign *= -1
}
adjusted.adjustBy, ok = BellmanFordFrom(johnsonGraphNode(q), johnsonReWeight{adjusted, q})
if !ok {
return paths, false
}
dijkstraAllPaths(adjusted, paths)
for i, u := range paths.nodes {
hu := adjusted.adjustBy.WeightTo(u.ID())
for j, v := range paths.nodes {
if i == j {
continue
}
hv := adjusted.adjustBy.WeightTo(v.ID())
paths.dist.Set(i, j, paths.dist.At(i, j)-hu+hv)
}
}
return paths, ok
}
// johnsonWeightAdjuster is an edge re-weighted graph constructed
// by the first phase of the Johnson algorithm such that no negative
// edge weights exist in the graph.
type johnsonWeightAdjuster struct {
graph.Graph
weight Weighting
adjustBy Shortest
}
var _ graph.Weighted = johnsonWeightAdjuster{}
func (g johnsonWeightAdjuster) Node(id int64) graph.Node {
panic("path: unintended use of johnsonWeightAdjuster")
}
func (g johnsonWeightAdjuster) WeightedEdge(_, _ int64) graph.WeightedEdge {
panic("path: unintended use of johnsonWeightAdjuster")
}
func (g johnsonWeightAdjuster) Weight(xid, yid int64) (w float64, ok bool) {
w, ok = g.weight(xid, yid)
return w + g.adjustBy.WeightTo(xid) - g.adjustBy.WeightTo(yid), ok
}
func (johnsonWeightAdjuster) HasEdgeBetween(_, _ int64) bool {
panic("path: unintended use of johnsonWeightAdjuster")
}
// johnsonReWeight provides a query node to allow edge re-weighting
// using the Bellman-Ford algorithm for the first phase of the
// Johnson algorithm.
type johnsonReWeight struct {
johnsonWeightAdjuster
q int64
}
func (g johnsonReWeight) Node(id int64) graph.Node {
if id != g.q {
panic("path: unintended use of johnsonReWeight")
}
return simple.Node(id)
}
func (g johnsonReWeight) Nodes() graph.Nodes {
return newJohnsonNodeIterator(g.q, g.Graph.Nodes())
}
func (g johnsonReWeight) From(id int64) graph.Nodes {
if id == g.q {
return g.Graph.Nodes()
}
return g.Graph.From(id)
}
func (g johnsonReWeight) Edge(uid, vid int64) graph.Edge {
if uid == g.q && g.Graph.Node(vid) != nil {
return simple.Edge{F: johnsonGraphNode(g.q), T: simple.Node(vid)}
}
return g.Graph.Edge(uid, vid)
}
func (g johnsonReWeight) Weight(xid, yid int64) (w float64, ok bool) {
switch g.q {
case xid:
return 0, true
case yid:
return math.Inf(1), false
default:
return g.weight(xid, yid)
}
}
type johnsonGraphNode int64
func (n johnsonGraphNode) ID() int64 { return int64(n) }
func newJohnsonNodeIterator(q int64, nodes graph.Nodes) *johnsonNodeIterator {
return &johnsonNodeIterator{q: q, nodes: nodes}
}
type johnsonNodeIterator struct {
q int64
nodes graph.Nodes
qUsed, qOK bool
}
func (it *johnsonNodeIterator) Len() int {
var len int
if it.nodes != nil {
len = it.nodes.Len()
if len < 0 {
return len
}
}
if !it.qUsed {
len++
}
return len
}
func (it *johnsonNodeIterator) Next() bool {
if it.nodes != nil {
ok := it.nodes.Next()
if ok {
return true
}
}
if !it.qUsed {
it.qOK = true
it.qUsed = true
return true
}
it.qOK = false
return false
}
func (it *johnsonNodeIterator) Node() graph.Node {
if it.qOK {
return johnsonGraphNode(it.q)
}
if it.nodes == nil {
return nil
}
return it.nodes.Node()
}
func (it *johnsonNodeIterator) Reset() {
it.qOK = false
it.qUsed = false
if it.nodes == nil {
return
}
it.nodes.Reset()
}