mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 14:52:57 +08:00
140 lines
3.2 KiB
Go
140 lines
3.2 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package testlapack
|
||
|
||
import (
|
||
"testing"
|
||
|
||
"golang.org/x/exp/rand"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
type Dgeqp3er interface {
|
||
Dlapmter
|
||
Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int)
|
||
}
|
||
|
||
func Dgeqp3Test(t *testing.T, impl Dgeqp3er) {
|
||
rnd := rand.New(rand.NewSource(1))
|
||
for c, test := range []struct {
|
||
m, n, lda int
|
||
}{
|
||
{1, 1, 0},
|
||
{2, 2, 0},
|
||
{3, 2, 0},
|
||
{2, 3, 0},
|
||
{1, 12, 0},
|
||
{2, 6, 0},
|
||
{3, 4, 0},
|
||
{4, 3, 0},
|
||
{6, 2, 0},
|
||
{12, 1, 0},
|
||
{1, 1, 20},
|
||
{2, 2, 20},
|
||
{3, 2, 20},
|
||
{2, 3, 20},
|
||
{1, 12, 20},
|
||
{2, 6, 20},
|
||
{3, 4, 20},
|
||
{4, 3, 20},
|
||
{6, 2, 20},
|
||
{12, 1, 20},
|
||
{129, 256, 0},
|
||
{256, 129, 0},
|
||
{129, 256, 266},
|
||
{256, 129, 266},
|
||
} {
|
||
n := test.n
|
||
m := test.m
|
||
lda := test.lda
|
||
if lda == 0 {
|
||
lda = test.n
|
||
}
|
||
const (
|
||
all = iota
|
||
some
|
||
none
|
||
)
|
||
for _, free := range []int{all, some, none} {
|
||
// Allocate m×n matrix A and fill it with random numbers.
|
||
a := make([]float64, m*lda)
|
||
for i := range a {
|
||
a[i] = rnd.Float64()
|
||
}
|
||
// Store a copy of A for later comparison.
|
||
aCopy := make([]float64, len(a))
|
||
copy(aCopy, a)
|
||
// Allocate a slice of column pivots.
|
||
jpvt := make([]int, n)
|
||
for j := range jpvt {
|
||
switch free {
|
||
case all:
|
||
// All columns are free.
|
||
jpvt[j] = -1
|
||
case some:
|
||
// Some columns are free, some are leading columns.
|
||
jpvt[j] = rnd.Intn(2) - 1 // -1 or 0
|
||
case none:
|
||
// All columns are leading.
|
||
jpvt[j] = 0
|
||
default:
|
||
panic("bad freedom")
|
||
}
|
||
}
|
||
// Allocate a slice for scalar factors of elementary
|
||
// reflectors and fill it with random numbers. Dgeqp3
|
||
// will overwrite them with valid data.
|
||
k := min(m, n)
|
||
tau := make([]float64, k)
|
||
for i := range tau {
|
||
tau[i] = rnd.Float64()
|
||
}
|
||
// Get optimal workspace size for Dgeqp3.
|
||
work := make([]float64, 1)
|
||
impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, -1)
|
||
lwork := int(work[0])
|
||
work = make([]float64, lwork)
|
||
for i := range work {
|
||
work[i] = rnd.Float64()
|
||
}
|
||
|
||
// Compute a QR factorization of A with column pivoting.
|
||
impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, lwork)
|
||
|
||
// Compute Q based on the elementary reflectors stored in A.
|
||
q := constructQ("QR", m, n, a, lda, tau)
|
||
// Check that Q is orthogonal.
|
||
if !isOrthogonal(q) {
|
||
t.Errorf("Case %v, Q not orthogonal", c)
|
||
}
|
||
|
||
// Copy the upper triangle of A into R.
|
||
r := blas64.General{
|
||
Rows: m,
|
||
Cols: n,
|
||
Stride: n,
|
||
Data: make([]float64, m*n),
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
for j := i; j < n; j++ {
|
||
r.Data[i*n+j] = a[i*lda+j]
|
||
}
|
||
}
|
||
// Compute Q * R.
|
||
got := nanGeneral(m, n, lda)
|
||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, r, 0, got)
|
||
// Compute A * P: rearrange the columns of A based on the permutation in jpvt.
|
||
want := blas64.General{Rows: m, Cols: n, Stride: lda, Data: aCopy}
|
||
impl.Dlapmt(true, want.Rows, want.Cols, want.Data, want.Stride, jpvt)
|
||
// Check that A * P = Q * R.
|
||
if !equalApproxGeneral(got, want, 1e-13) {
|
||
t.Errorf("Case %v, Q*R != A*P\nQ*R=%v\nA*P=%v", c, got, want)
|
||
}
|
||
}
|
||
}
|
||
}
|