// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) type Dgeqp3er interface { Dlapmter Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int) } func Dgeqp3Test(t *testing.T, impl Dgeqp3er) { rnd := rand.New(rand.NewSource(1)) for c, test := range []struct { m, n, lda int }{ {1, 1, 0}, {2, 2, 0}, {3, 2, 0}, {2, 3, 0}, {1, 12, 0}, {2, 6, 0}, {3, 4, 0}, {4, 3, 0}, {6, 2, 0}, {12, 1, 0}, {1, 1, 20}, {2, 2, 20}, {3, 2, 20}, {2, 3, 20}, {1, 12, 20}, {2, 6, 20}, {3, 4, 20}, {4, 3, 20}, {6, 2, 20}, {12, 1, 20}, {129, 256, 0}, {256, 129, 0}, {129, 256, 266}, {256, 129, 266}, } { n := test.n m := test.m lda := test.lda if lda == 0 { lda = test.n } const ( all = iota some none ) for _, free := range []int{all, some, none} { // Allocate m×n matrix A and fill it with random numbers. a := make([]float64, m*lda) for i := range a { a[i] = rnd.Float64() } // Store a copy of A for later comparison. aCopy := make([]float64, len(a)) copy(aCopy, a) // Allocate a slice of column pivots. jpvt := make([]int, n) for j := range jpvt { switch free { case all: // All columns are free. jpvt[j] = -1 case some: // Some columns are free, some are leading columns. jpvt[j] = rnd.Intn(2) - 1 // -1 or 0 case none: // All columns are leading. jpvt[j] = 0 default: panic("bad freedom") } } // Allocate a slice for scalar factors of elementary // reflectors and fill it with random numbers. Dgeqp3 // will overwrite them with valid data. k := min(m, n) tau := make([]float64, k) for i := range tau { tau[i] = rnd.Float64() } // Get optimal workspace size for Dgeqp3. work := make([]float64, 1) impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, -1) lwork := int(work[0]) work = make([]float64, lwork) for i := range work { work[i] = rnd.Float64() } // Compute a QR factorization of A with column pivoting. impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, lwork) // Compute Q based on the elementary reflectors stored in A. q := constructQ("QR", m, n, a, lda, tau) // Check that Q is orthogonal. if !isOrthogonal(q) { t.Errorf("Case %v, Q not orthogonal", c) } // Copy the upper triangle of A into R. r := blas64.General{ Rows: m, Cols: n, Stride: n, Data: make([]float64, m*n), } for i := 0; i < m; i++ { for j := i; j < n; j++ { r.Data[i*n+j] = a[i*lda+j] } } // Compute Q * R. got := nanGeneral(m, n, lda) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, r, 0, got) // Compute A * P: rearrange the columns of A based on the permutation in jpvt. want := blas64.General{Rows: m, Cols: n, Stride: lda, Data: aCopy} impl.Dlapmt(true, want.Rows, want.Cols, want.Data, want.Stride, jpvt) // Check that A * P = Q * R. if !equalApproxGeneral(got, want, 1e-13) { t.Errorf("Case %v, Q*R != A*P\nQ*R=%v\nA*P=%v", c, got, want) } } } }