mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
348 lines
8.7 KiB
Go
348 lines
8.7 KiB
Go
// Copyright ©2018 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Derived from code by Jeffrey A. Fike at http://adl.stanford.edu/hyperdual/
|
|
|
|
// The MIT License (MIT)
|
|
//
|
|
// Copyright (c) 2006 Jeffrey A. Fike
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
package hyperdual
|
|
|
|
import "math"
|
|
|
|
// PowReal returns x**p, the base-x exponential of p.
|
|
//
|
|
// Special cases are (in order):
|
|
//
|
|
// PowReal(NaN+xϵ₁+yϵ₂, ±0) = 1+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for any x and y
|
|
// PowReal(x, ±0) = 1 for any x
|
|
// PowReal(1+xϵ₁+yϵ₂, z) = 1+xzϵ₁+yzϵ₂+2xyzϵ₁ϵ₂ for any z
|
|
// PowReal(NaN+xϵ₁+yϵ₂, 1) = NaN+xϵ₁+yϵ₂+NaNϵ₁ϵ₂ for any x
|
|
// PowReal(x, 1) = x for any x
|
|
// PowReal(NaN+xϵ₁+xϵ₂, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
|
|
// PowReal(x, NaN) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
|
|
// PowReal(±0, y) = ±Inf for y an odd integer < 0
|
|
// PowReal(±0, -Inf) = +Inf
|
|
// PowReal(±0, +Inf) = +0
|
|
// PowReal(±0, y) = +Inf for finite y < 0 and not an odd integer
|
|
// PowReal(±0, y) = ±0 for y an odd integer > 0
|
|
// PowReal(±0, y) = +0 for finite y > 0 and not an odd integer
|
|
// PowReal(-1, ±Inf) = 1
|
|
// PowReal(x+0ϵ₁+0ϵ₂, +Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
|
|
// PowReal(x+xϵ₁+yϵ₂, +Inf) = +Inf+Infϵ₁+Infϵ₂+NaNϵ₁ϵ₂ for |x| > 1
|
|
// PowReal(x, -Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
|
|
// PowReal(x+yϵ₁+zϵ₂, +Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
|
|
// PowReal(x+0ϵ₁+0ϵ₂, -Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
|
|
// PowReal(x, -Inf) = +Inf-Infϵ₁-Infϵ₂+NaNϵ₁ϵ₂ for |x| < 1
|
|
// PowReal(+Inf, y) = +Inf for y > 0
|
|
// PowReal(+Inf, y) = +0 for y < 0
|
|
// PowReal(-Inf, y) = Pow(-0, -y)
|
|
// PowReal(x, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for finite x < 0 and finite non-integer y
|
|
func PowReal(d Number, p float64) Number {
|
|
const tol = 1e-15
|
|
|
|
r := d.Real
|
|
if math.Abs(r) < tol {
|
|
if r >= 0 {
|
|
r = tol
|
|
}
|
|
if r < 0 {
|
|
r = -tol
|
|
}
|
|
}
|
|
deriv := p * math.Pow(r, p-1)
|
|
return Number{
|
|
Real: math.Pow(d.Real, p),
|
|
E1mag: d.E1mag * deriv,
|
|
E2mag: d.E2mag * deriv,
|
|
E1E2mag: d.E1E2mag*deriv + p*(p-1)*d.E1mag*d.E2mag*math.Pow(r, (p-2)),
|
|
}
|
|
}
|
|
|
|
// Pow returns x**p, the base-x exponential of p.
|
|
func Pow(d, p Number) Number {
|
|
return Exp(Mul(p, Log(d)))
|
|
}
|
|
|
|
// Sqrt returns the square root of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Sqrt(+Inf) = +Inf
|
|
// Sqrt(±0) = (±0+Infϵ₁+Infϵ₂-Infϵ₁ϵ₂)
|
|
// Sqrt(x < 0) = NaN
|
|
// Sqrt(NaN) = NaN
|
|
func Sqrt(d Number) Number {
|
|
if d.Real <= 0 {
|
|
if d.Real == 0 {
|
|
return Number{
|
|
Real: d.Real,
|
|
E1mag: math.Inf(1),
|
|
E2mag: math.Inf(1),
|
|
E1E2mag: math.Inf(-1),
|
|
}
|
|
}
|
|
return Number{
|
|
Real: math.NaN(),
|
|
E1mag: math.NaN(),
|
|
E2mag: math.NaN(),
|
|
E1E2mag: math.NaN(),
|
|
}
|
|
}
|
|
return PowReal(d, 0.5)
|
|
}
|
|
|
|
// Exp returns e**q, the base-e exponential of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Exp(+Inf) = +Inf
|
|
// Exp(NaN) = NaN
|
|
//
|
|
// Very large values overflow to 0 or +Inf.
|
|
// Very small values underflow to 1.
|
|
func Exp(d Number) Number {
|
|
exp := math.Exp(d.Real) // exp is also the derivative.
|
|
return Number{
|
|
Real: exp,
|
|
E1mag: exp * d.E1mag,
|
|
E2mag: exp * d.E2mag,
|
|
E1E2mag: exp * (d.E1E2mag + d.E1mag*d.E2mag),
|
|
}
|
|
}
|
|
|
|
// Log returns the natural logarithm of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Log(+Inf) = (+Inf+0ϵ₁+0ϵ₂-0ϵ₁ϵ₂)
|
|
// Log(0) = (-Inf±Infϵ₁±Infϵ₂-Infϵ₁ϵ₂)
|
|
// Log(x < 0) = NaN
|
|
// Log(NaN) = NaN
|
|
func Log(d Number) Number {
|
|
switch d.Real {
|
|
case 0:
|
|
return Number{
|
|
Real: math.Log(d.Real),
|
|
E1mag: math.Copysign(math.Inf(1), d.Real),
|
|
E2mag: math.Copysign(math.Inf(1), d.Real),
|
|
E1E2mag: math.Inf(-1),
|
|
}
|
|
case math.Inf(1):
|
|
return Number{
|
|
Real: math.Log(d.Real),
|
|
E1mag: 0,
|
|
E2mag: 0,
|
|
E1E2mag: negZero,
|
|
}
|
|
}
|
|
if d.Real < 0 {
|
|
return Number{
|
|
Real: math.NaN(),
|
|
E1mag: math.NaN(),
|
|
E2mag: math.NaN(),
|
|
E1E2mag: math.NaN(),
|
|
}
|
|
}
|
|
deriv1 := d.E1mag / d.Real
|
|
deriv2 := d.E2mag / d.Real
|
|
return Number{
|
|
Real: math.Log(d.Real),
|
|
E1mag: deriv1,
|
|
E2mag: deriv2,
|
|
E1E2mag: d.E1E2mag/d.Real - (deriv1 * deriv2),
|
|
}
|
|
}
|
|
|
|
// Sin returns the sine of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Sin(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
|
|
// Sin(±Inf) = NaN
|
|
// Sin(NaN) = NaN
|
|
func Sin(d Number) Number {
|
|
if d.Real == 0 {
|
|
return Number{
|
|
Real: d.Real,
|
|
E1mag: d.E1mag,
|
|
E2mag: d.E2mag,
|
|
E1E2mag: -d.Real,
|
|
}
|
|
}
|
|
fn := math.Sin(d.Real)
|
|
deriv := math.Cos(d.Real)
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
|
|
}
|
|
}
|
|
|
|
// Cos returns the cosine of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Cos(±Inf) = NaN
|
|
// Cos(NaN) = NaN
|
|
func Cos(d Number) Number {
|
|
fn := math.Cos(d.Real)
|
|
deriv := -math.Sin(d.Real)
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
|
|
}
|
|
}
|
|
|
|
// Tan returns the tangent of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Tan(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
|
|
// Tan(±Inf) = NaN
|
|
// Tan(NaN) = NaN
|
|
func Tan(d Number) Number {
|
|
if d.Real == 0 {
|
|
return Number{
|
|
Real: d.Real,
|
|
E1mag: d.E1mag,
|
|
E2mag: d.E2mag,
|
|
E1E2mag: d.Real,
|
|
}
|
|
}
|
|
fn := math.Tan(d.Real)
|
|
deriv := 1 + fn*fn
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(2*fn*deriv),
|
|
}
|
|
}
|
|
|
|
// Asin returns the inverse sine of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Asin(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
|
|
// Asin(±1) = (±Inf+Infϵ₁+Infϵ₂±Infϵ₁ϵ₂)
|
|
// Asin(x) = NaN if x < -1 or x > 1
|
|
func Asin(d Number) Number {
|
|
if d.Real == 0 {
|
|
return Number{
|
|
Real: d.Real,
|
|
E1mag: d.E1mag,
|
|
E2mag: d.E2mag,
|
|
E1E2mag: d.Real,
|
|
}
|
|
} else if m := math.Abs(d.Real); m >= 1 {
|
|
if m == 1 {
|
|
return Number{
|
|
Real: math.Asin(d.Real),
|
|
E1mag: math.Inf(1),
|
|
E2mag: math.Inf(1),
|
|
E1E2mag: math.Copysign(math.Inf(1), d.Real),
|
|
}
|
|
}
|
|
return Number{
|
|
Real: math.NaN(),
|
|
E1mag: math.NaN(),
|
|
E2mag: math.NaN(),
|
|
E1E2mag: math.NaN(),
|
|
}
|
|
}
|
|
fn := math.Asin(d.Real)
|
|
deriv1 := 1 - d.Real*d.Real
|
|
deriv := 1 / math.Sqrt(deriv1)
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(d.Real*math.Pow(deriv1, -1.5)),
|
|
}
|
|
}
|
|
|
|
// Acos returns the inverse cosine of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Acos(-1) = (Pi-Infϵ₁-Infϵ₂+Infϵ₁ϵ₂)
|
|
// Acos(1) = (0-Infϵ₁-Infϵ₂-Infϵ₁ϵ₂)
|
|
// Acos(x) = NaN if x < -1 or x > 1
|
|
func Acos(d Number) Number {
|
|
if m := math.Abs(d.Real); m >= 1 {
|
|
if m == 1 {
|
|
return Number{
|
|
Real: math.Acos(d.Real),
|
|
E1mag: math.Inf(-1),
|
|
E2mag: math.Inf(-1),
|
|
E1E2mag: math.Copysign(math.Inf(1), -d.Real),
|
|
}
|
|
}
|
|
return Number{
|
|
Real: math.NaN(),
|
|
E1mag: math.NaN(),
|
|
E2mag: math.NaN(),
|
|
E1E2mag: math.NaN(),
|
|
}
|
|
}
|
|
fn := math.Acos(d.Real)
|
|
deriv1 := 1 - d.Real*d.Real
|
|
deriv := -1 / math.Sqrt(deriv1)
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-d.Real*math.Pow(deriv1, -1.5)),
|
|
}
|
|
}
|
|
|
|
// Atan returns the inverse tangent of d.
|
|
//
|
|
// Special cases are:
|
|
//
|
|
// Atan(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
|
|
// Atan(±Inf) = (±Pi/2+0ϵ₁+0ϵ₂∓0ϵ₁ϵ₂)
|
|
func Atan(d Number) Number {
|
|
if d.Real == 0 {
|
|
return Number{
|
|
Real: d.Real,
|
|
E1mag: d.E1mag,
|
|
E2mag: d.E2mag,
|
|
E1E2mag: -d.Real,
|
|
}
|
|
}
|
|
fn := math.Atan(d.Real)
|
|
deriv1 := 1 + d.Real*d.Real
|
|
deriv := 1 / deriv1
|
|
return Number{
|
|
Real: fn,
|
|
E1mag: deriv * d.E1mag,
|
|
E2mag: deriv * d.E2mag,
|
|
E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-2*d.Real/(deriv1*deriv1)),
|
|
}
|
|
}
|