// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Derived from code by Jeffrey A. Fike at http://adl.stanford.edu/hyperdual/ // The MIT License (MIT) // // Copyright (c) 2006 Jeffrey A. Fike // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package hyperdual import "math" // PowReal returns x**p, the base-x exponential of p. // // Special cases are (in order): // // PowReal(NaN+xϵ₁+yϵ₂, ±0) = 1+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for any x and y // PowReal(x, ±0) = 1 for any x // PowReal(1+xϵ₁+yϵ₂, z) = 1+xzϵ₁+yzϵ₂+2xyzϵ₁ϵ₂ for any z // PowReal(NaN+xϵ₁+yϵ₂, 1) = NaN+xϵ₁+yϵ₂+NaNϵ₁ϵ₂ for any x // PowReal(x, 1) = x for any x // PowReal(NaN+xϵ₁+xϵ₂, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ // PowReal(x, NaN) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ // PowReal(±0, y) = ±Inf for y an odd integer < 0 // PowReal(±0, -Inf) = +Inf // PowReal(±0, +Inf) = +0 // PowReal(±0, y) = +Inf for finite y < 0 and not an odd integer // PowReal(±0, y) = ±0 for y an odd integer > 0 // PowReal(±0, y) = +0 for finite y > 0 and not an odd integer // PowReal(-1, ±Inf) = 1 // PowReal(x+0ϵ₁+0ϵ₂, +Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1 // PowReal(x+xϵ₁+yϵ₂, +Inf) = +Inf+Infϵ₁+Infϵ₂+NaNϵ₁ϵ₂ for |x| > 1 // PowReal(x, -Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1 // PowReal(x+yϵ₁+zϵ₂, +Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1 // PowReal(x+0ϵ₁+0ϵ₂, -Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1 // PowReal(x, -Inf) = +Inf-Infϵ₁-Infϵ₂+NaNϵ₁ϵ₂ for |x| < 1 // PowReal(+Inf, y) = +Inf for y > 0 // PowReal(+Inf, y) = +0 for y < 0 // PowReal(-Inf, y) = Pow(-0, -y) // PowReal(x, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for finite x < 0 and finite non-integer y func PowReal(d Number, p float64) Number { const tol = 1e-15 r := d.Real if math.Abs(r) < tol { if r >= 0 { r = tol } if r < 0 { r = -tol } } deriv := p * math.Pow(r, p-1) return Number{ Real: math.Pow(d.Real, p), E1mag: d.E1mag * deriv, E2mag: d.E2mag * deriv, E1E2mag: d.E1E2mag*deriv + p*(p-1)*d.E1mag*d.E2mag*math.Pow(r, (p-2)), } } // Pow returns x**p, the base-x exponential of p. func Pow(d, p Number) Number { return Exp(Mul(p, Log(d))) } // Sqrt returns the square root of d. // // Special cases are: // // Sqrt(+Inf) = +Inf // Sqrt(±0) = (±0+Infϵ₁+Infϵ₂-Infϵ₁ϵ₂) // Sqrt(x < 0) = NaN // Sqrt(NaN) = NaN func Sqrt(d Number) Number { if d.Real <= 0 { if d.Real == 0 { return Number{ Real: d.Real, E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.Inf(-1), } } return Number{ Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN(), } } return PowReal(d, 0.5) } // Exp returns e**q, the base-e exponential of d. // // Special cases are: // // Exp(+Inf) = +Inf // Exp(NaN) = NaN // // Very large values overflow to 0 or +Inf. // Very small values underflow to 1. func Exp(d Number) Number { exp := math.Exp(d.Real) // exp is also the derivative. return Number{ Real: exp, E1mag: exp * d.E1mag, E2mag: exp * d.E2mag, E1E2mag: exp * (d.E1E2mag + d.E1mag*d.E2mag), } } // Log returns the natural logarithm of d. // // Special cases are: // // Log(+Inf) = (+Inf+0ϵ₁+0ϵ₂-0ϵ₁ϵ₂) // Log(0) = (-Inf±Infϵ₁±Infϵ₂-Infϵ₁ϵ₂) // Log(x < 0) = NaN // Log(NaN) = NaN func Log(d Number) Number { switch d.Real { case 0: return Number{ Real: math.Log(d.Real), E1mag: math.Copysign(math.Inf(1), d.Real), E2mag: math.Copysign(math.Inf(1), d.Real), E1E2mag: math.Inf(-1), } case math.Inf(1): return Number{ Real: math.Log(d.Real), E1mag: 0, E2mag: 0, E1E2mag: negZero, } } if d.Real < 0 { return Number{ Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN(), } } deriv1 := d.E1mag / d.Real deriv2 := d.E2mag / d.Real return Number{ Real: math.Log(d.Real), E1mag: deriv1, E2mag: deriv2, E1E2mag: d.E1E2mag/d.Real - (deriv1 * deriv2), } } // Sin returns the sine of d. // // Special cases are: // // Sin(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂) // Sin(±Inf) = NaN // Sin(NaN) = NaN func Sin(d Number) Number { if d.Real == 0 { return Number{ Real: d.Real, E1mag: d.E1mag, E2mag: d.E2mag, E1E2mag: -d.Real, } } fn := math.Sin(d.Real) deriv := math.Cos(d.Real) return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag, } } // Cos returns the cosine of d. // // Special cases are: // // Cos(±Inf) = NaN // Cos(NaN) = NaN func Cos(d Number) Number { fn := math.Cos(d.Real) deriv := -math.Sin(d.Real) return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag, } } // Tan returns the tangent of d. // // Special cases are: // // Tan(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂) // Tan(±Inf) = NaN // Tan(NaN) = NaN func Tan(d Number) Number { if d.Real == 0 { return Number{ Real: d.Real, E1mag: d.E1mag, E2mag: d.E2mag, E1E2mag: d.Real, } } fn := math.Tan(d.Real) deriv := 1 + fn*fn return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(2*fn*deriv), } } // Asin returns the inverse sine of d. // // Special cases are: // // Asin(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂) // Asin(±1) = (±Inf+Infϵ₁+Infϵ₂±Infϵ₁ϵ₂) // Asin(x) = NaN if x < -1 or x > 1 func Asin(d Number) Number { if d.Real == 0 { return Number{ Real: d.Real, E1mag: d.E1mag, E2mag: d.E2mag, E1E2mag: d.Real, } } else if m := math.Abs(d.Real); m >= 1 { if m == 1 { return Number{ Real: math.Asin(d.Real), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.Copysign(math.Inf(1), d.Real), } } return Number{ Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN(), } } fn := math.Asin(d.Real) deriv1 := 1 - d.Real*d.Real deriv := 1 / math.Sqrt(deriv1) return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(d.Real*math.Pow(deriv1, -1.5)), } } // Acos returns the inverse cosine of d. // // Special cases are: // // Acos(-1) = (Pi-Infϵ₁-Infϵ₂+Infϵ₁ϵ₂) // Acos(1) = (0-Infϵ₁-Infϵ₂-Infϵ₁ϵ₂) // Acos(x) = NaN if x < -1 or x > 1 func Acos(d Number) Number { if m := math.Abs(d.Real); m >= 1 { if m == 1 { return Number{ Real: math.Acos(d.Real), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.Copysign(math.Inf(1), -d.Real), } } return Number{ Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN(), } } fn := math.Acos(d.Real) deriv1 := 1 - d.Real*d.Real deriv := -1 / math.Sqrt(deriv1) return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-d.Real*math.Pow(deriv1, -1.5)), } } // Atan returns the inverse tangent of d. // // Special cases are: // // Atan(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂) // Atan(±Inf) = (±Pi/2+0ϵ₁+0ϵ₂∓0ϵ₁ϵ₂) func Atan(d Number) Number { if d.Real == 0 { return Number{ Real: d.Real, E1mag: d.E1mag, E2mag: d.E2mag, E1E2mag: -d.Real, } } fn := math.Atan(d.Real) deriv1 := 1 + d.Real*d.Real deriv := 1 / deriv1 return Number{ Real: fn, E1mag: deriv * d.E1mag, E2mag: deriv * d.E2mag, E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-2*d.Real/(deriv1*deriv1)), } }