Files
gonum/covariancematrix.go

156 lines
4.3 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
)
// CovarianceMatrix calculates a covariance matrix (also known as a
// variance-covariance matrix) from a matrix of data, using a two-pass
// algorithm. The matrix returned will be symmetric and square.
//
// The weights wts should have the length equal to the number of rows in
// input data matrix x. If c is nil, then a new matrix with appropriate size will
// be constructed. If c is not nil, it should be a square matrix with the same
// number of columns as the input data matrix x, and it will be used as the receiver
// for the covariance data. Weights cannot be negative.
func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense {
// This is the matrix version of the two-pass algorithm. It doesn't use the
// additional floating point error correction that the Covariance function uses
// to reduce the impact of rounding during centering.
// TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change
// the returned type from a *mat.Dense to a *mat.Symmetric.
r, c := x.Dims()
if cov == nil {
cov = mat64.NewDense(c, c, nil)
} else if covr, covc := cov.Dims(); covr != covc || covc != c {
panic(mat64.ErrShape)
}
var xt mat64.Dense
xt.TCopy(x)
// Subtract the mean of each of the columns.
for i := 0; i < c; i++ {
v := xt.RawRowView(i)
// This will panic with ErrShape if len(wts) != len(v), so
// we don't have to check the size later.
mean := Mean(v, wts)
floats.AddConst(-mean, v)
}
var n float64
if wts == nil {
n = float64(r)
cov.Mul(&xt, (&xt).T())
// Scale by the sample size.
cov.Scale(1/(n-1), cov)
return cov
}
// Multiply by the sqrt of the weights, so that multiplication is symmetric.
sqrtwts := make([]float64, r)
for i, w := range wts {
if w < 0 {
panic("stat: negative covariance matrix weights")
}
sqrtwts[i] = math.Sqrt(w)
}
// Weight the rows.
for i := 0; i < c; i++ {
v := xt.RawRowView(i)
floats.Mul(v, sqrtwts)
}
// Calculate the normalization factor.
n = floats.Sum(wts)
cov.Mul(&xt, (&xt).T())
// Scale by the sample size.
cov.Scale(1/(n-1), cov)
return cov
}
// CorrelationMatrix calculates a correlation matrix from a matrix of data,
// using a two-pass algorithm. The matrix returned will be symmetric and square.
//
// The weights wts should have the length equal to the number of rows in
// input data matrix x. If c is nil, then a new matrix with appropriate size will
// be constructed. If c is not nil, it should be a square matrix with the same
// number of columns as the input data matrix x, and it will be used as the receiver
// for the correlation data. Weights cannot be negative.
func CorrelationMatrix(c *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense {
// TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change
// the returned type from a *mat.Dense to a *mat.Symmetric.
// This will panic if the sizes don't match, or if wts is the wrong size.
c = CovarianceMatrix(c, x, wts)
covToCorr(c)
return c
}
// covToCorr converts a covariance matrix to a correlation matrix.
func covToCorr(c *mat64.Dense) {
// TODO(jonlawlor): use a *mat64.Symmetric as input.
r, _ := c.Dims()
s := make([]float64, r)
for i := 0; i < r; i++ {
s[i] = 1 / math.Sqrt(c.At(i, i))
}
for i, sx := range s {
row := c.RawRowView(i)
for j, sy := range s {
if i == j {
// Ensure that the diagonal has exactly ones.
row[j] = 1
continue
}
row[j] *= sx
row[j] *= sy
}
}
}
// corrToCov converts a correlation matrix to a covariance matrix.
// The input sigma should be vector of standard deviations corresponding
// to the covariance. It will panic if len(sigma) is not equal to the
// number of rows in the correlation matrix.
func corrToCov(c *mat64.Dense, sigma []float64) {
// TODO(jonlawlor): use a *mat64.Symmetric as input.
r, _ := c.Dims()
if r != len(sigma) {
panic(mat64.ErrShape)
}
for i, sx := range sigma {
row := c.RawRowView(i)
for j, sy := range sigma {
if i == j {
// Ensure that the diagonal has exactly sigma squared.
row[j] = sx * sx
continue
}
row[j] *= sx
row[j] *= sy
}
}
}