// Copyright ©2014 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat import ( "math" "github.com/gonum/floats" "github.com/gonum/matrix/mat64" ) // CovarianceMatrix calculates a covariance matrix (also known as a // variance-covariance matrix) from a matrix of data, using a two-pass // algorithm. The matrix returned will be symmetric and square. // // The weights wts should have the length equal to the number of rows in // input data matrix x. If c is nil, then a new matrix with appropriate size will // be constructed. If c is not nil, it should be a square matrix with the same // number of columns as the input data matrix x, and it will be used as the receiver // for the covariance data. Weights cannot be negative. func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense { // This is the matrix version of the two-pass algorithm. It doesn't use the // additional floating point error correction that the Covariance function uses // to reduce the impact of rounding during centering. // TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change // the returned type from a *mat.Dense to a *mat.Symmetric. r, c := x.Dims() if cov == nil { cov = mat64.NewDense(c, c, nil) } else if covr, covc := cov.Dims(); covr != covc || covc != c { panic(mat64.ErrShape) } var xt mat64.Dense xt.TCopy(x) // Subtract the mean of each of the columns. for i := 0; i < c; i++ { v := xt.RawRowView(i) // This will panic with ErrShape if len(wts) != len(v), so // we don't have to check the size later. mean := Mean(v, wts) floats.AddConst(-mean, v) } var n float64 if wts == nil { n = float64(r) cov.Mul(&xt, (&xt).T()) // Scale by the sample size. cov.Scale(1/(n-1), cov) return cov } // Multiply by the sqrt of the weights, so that multiplication is symmetric. sqrtwts := make([]float64, r) for i, w := range wts { if w < 0 { panic("stat: negative covariance matrix weights") } sqrtwts[i] = math.Sqrt(w) } // Weight the rows. for i := 0; i < c; i++ { v := xt.RawRowView(i) floats.Mul(v, sqrtwts) } // Calculate the normalization factor. n = floats.Sum(wts) cov.Mul(&xt, (&xt).T()) // Scale by the sample size. cov.Scale(1/(n-1), cov) return cov } // CorrelationMatrix calculates a correlation matrix from a matrix of data, // using a two-pass algorithm. The matrix returned will be symmetric and square. // // The weights wts should have the length equal to the number of rows in // input data matrix x. If c is nil, then a new matrix with appropriate size will // be constructed. If c is not nil, it should be a square matrix with the same // number of columns as the input data matrix x, and it will be used as the receiver // for the correlation data. Weights cannot be negative. func CorrelationMatrix(c *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense { // TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change // the returned type from a *mat.Dense to a *mat.Symmetric. // This will panic if the sizes don't match, or if wts is the wrong size. c = CovarianceMatrix(c, x, wts) covToCorr(c) return c } // covToCorr converts a covariance matrix to a correlation matrix. func covToCorr(c *mat64.Dense) { // TODO(jonlawlor): use a *mat64.Symmetric as input. r, _ := c.Dims() s := make([]float64, r) for i := 0; i < r; i++ { s[i] = 1 / math.Sqrt(c.At(i, i)) } for i, sx := range s { row := c.RawRowView(i) for j, sy := range s { if i == j { // Ensure that the diagonal has exactly ones. row[j] = 1 continue } row[j] *= sx row[j] *= sy } } } // corrToCov converts a correlation matrix to a covariance matrix. // The input sigma should be vector of standard deviations corresponding // to the covariance. It will panic if len(sigma) is not equal to the // number of rows in the correlation matrix. func corrToCov(c *mat64.Dense, sigma []float64) { // TODO(jonlawlor): use a *mat64.Symmetric as input. r, _ := c.Dims() if r != len(sigma) { panic(mat64.ErrShape) } for i, sx := range sigma { row := c.RawRowView(i) for j, sy := range sigma { if i == j { // Ensure that the diagonal has exactly sigma squared. row[j] = sx * sx continue } row[j] *= sx row[j] *= sy } } }