Files
gonum/covariancematrix.go
2014-12-21 18:57:58 -05:00

79 lines
2.0 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"github.com/gonum/matrix/mat64"
)
// CovarianceMatrix calculates a covariance matrix (also known as a
// variance-covariance matrix) from a matrix of data, using a two-pass
// algorithm. It requires a registered BLAS engine in gonum/matrix/mat64.
//
// The matrix returned will be symmetric, square, and positive-semidefinite.
//
// The weights wts should have the same number of elements as the rows in
// input data matrix x. cov should be a square matrix with the same number of
// columns as the input data matrix x, or if it is nil then a new Dense
// matrix will be constructed.
func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense {
// This is the matrix version of the two-pass algorithm. It doesn't use
// the correction found in the Covariance and Variance functions.
r, c := x.Dims()
// determine the mean of each of the columns
ones := make([]float64, r)
for i := range ones {
ones[i] = 1
}
b := mat64.NewDense(1, r, ones)
b.Mul(b, x)
b.Scale(1/float64(r), b)
mu := b.RowView(0)
// subtract the mean from the data
xc := mat64.DenseCopyOf(x)
for i := 0; i < r; i++ {
rv := xc.RowView(i)
for j, mean := range mu {
rv[j] -= mean
}
}
var xt mat64.Dense
xt.TCopy(xc)
// Calculate the normalization factor, which is typically N-1.
var N float64
if wts != nil {
if wr := len(wts); wr != r {
panic(mat64.ErrShape)
}
for i, w := range wts {
rv := xc.RowView(i)
N += w
for j := 0; j < c; j++ {
rv[j] *= w
}
}
N = 1 / (N - 1)
} else {
N = 1 / float64(r-1)
}
// TODO: indicate that the resulting matrix is symmetric, which
// should improve performance.
if cov == nil {
cov = mat64.NewDense(c, c, nil)
} else if covr, covc := cov.Dims(); covr != covc || covc != c {
panic(mat64.ErrShape)
}
cov.Mul(&xt, xc)
cov.Scale(N, cov)
return cov
}