// Copyright ©2014 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat import ( "github.com/gonum/matrix/mat64" ) // CovarianceMatrix calculates a covariance matrix (also known as a // variance-covariance matrix) from a matrix of data, using a two-pass // algorithm. It requires a registered BLAS engine in gonum/matrix/mat64. // // The matrix returned will be symmetric, square, and positive-semidefinite. // // The weights wts should have the same number of elements as the rows in // input data matrix x. cov should be a square matrix with the same number of // columns as the input data matrix x, or if it is nil then a new Dense // matrix will be constructed. func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense { // This is the matrix version of the two-pass algorithm. It doesn't use // the correction found in the Covariance and Variance functions. r, c := x.Dims() // determine the mean of each of the columns ones := make([]float64, r) for i := range ones { ones[i] = 1 } b := mat64.NewDense(1, r, ones) b.Mul(b, x) b.Scale(1/float64(r), b) mu := b.RowView(0) // subtract the mean from the data xc := mat64.DenseCopyOf(x) for i := 0; i < r; i++ { rv := xc.RowView(i) for j, mean := range mu { rv[j] -= mean } } var xt mat64.Dense xt.TCopy(xc) // Calculate the normalization factor, which is typically N-1. var N float64 if wts != nil { if wr := len(wts); wr != r { panic(mat64.ErrShape) } for i, w := range wts { rv := xc.RowView(i) N += w for j := 0; j < c; j++ { rv[j] *= w } } N = 1 / (N - 1) } else { N = 1 / float64(r-1) } // TODO: indicate that the resulting matrix is symmetric, which // should improve performance. if cov == nil { cov = mat64.NewDense(c, c, nil) } else if covr, covc := cov.Dims(); covr != covc || covc != c { panic(mat64.ErrShape) } cov.Mul(&xt, xc) cov.Scale(N, cov) return cov }