mirror of
https://github.com/gonum/gonum.git
synced 2025-10-16 12:10:37 +08:00
mat: update documentation for Eigen
This commit is contained in:

committed by
Vladimír Chalupecký

parent
66532af93a
commit
c5cc4a2357
26
mat/eigen.go
26
mat/eigen.go
@@ -127,7 +127,7 @@ func (e *Eigen) succFact() bool {
|
||||
// A right eigenvalue/eigenvector combination is defined by
|
||||
// A * x_r = λ * x_r
|
||||
// where x_r is the column vector called an eigenvector, and λ is the corresponding
|
||||
// eigenvector.
|
||||
// eigenvalue.
|
||||
//
|
||||
// Similarly, a left eigenvalue/eigenvector combination is defined by
|
||||
// x_l * A = λ * x_l
|
||||
@@ -135,7 +135,7 @@ func (e *Eigen) succFact() bool {
|
||||
//
|
||||
// Typically eigenvectors refer to right eigenvectors.
|
||||
//
|
||||
// In all cases, Eigen computes the eigenvalues of the matrix. If right and left
|
||||
// In all cases, Factorize computes the eigenvalues of the matrix. If right and left
|
||||
// are true, then the right and left eigenvectors will be computed, respectively.
|
||||
// Eigen panics if the input matrix is not square.
|
||||
//
|
||||
@@ -228,17 +228,17 @@ func (e *Eigen) Values(dst []complex128) []complex128 {
|
||||
return dst
|
||||
}
|
||||
|
||||
// complexEigenTo extracts the complex eigenvectors from the Dense matrix r and
|
||||
// stores them into the complex matrix c.
|
||||
// complexEigenTo extracts the complex eigenvectors from the real matrix d
|
||||
// and stores them into the complex matrix dst.
|
||||
//
|
||||
// The returned dense matrix contains the eigenvectors of the decomposition
|
||||
// in the columns of the n×n matrix in the same order as their eigenvalues.
|
||||
// The columns of the returned n×n dense matrix contain the eigenvectors of the
|
||||
// decomposition in the same order as the eigenvalues.
|
||||
// If the j-th eigenvalue is real, then
|
||||
// dst_j = d[:,j],
|
||||
// and if it is not real, then j and j+1 form a complex conjugate pair and the
|
||||
// eigenvectors can be recovered as
|
||||
// dst_j = d[:,j] + i*d[:,j+1],
|
||||
// dst_{j+1} = d[:,j] - i*d[:,j+1],
|
||||
// dst[:,j] = d[:,j],
|
||||
// and if it is not real, then the elements of the j-th and (j+1)-th columns of d
|
||||
// form complex conjugate pairs and the eigenvectors are recovered as
|
||||
// dst[:,j] = d[:,j] + i*d[:,j+1],
|
||||
// dst[:,j+1] = d[:,j] - i*d[:,j+1],
|
||||
// where i is the imaginary unit.
|
||||
func (e *Eigen) complexEigenTo(dst *CDense, d *Dense) {
|
||||
r, c := d.Dims()
|
||||
@@ -266,7 +266,7 @@ func (e *Eigen) complexEigenTo(dst *CDense, d *Dense) {
|
||||
}
|
||||
}
|
||||
|
||||
// Vectors returns the right eigenvectors of the decomposition. Vectors
|
||||
// VectorsTo returns the right eigenvectors of the decomposition. VectorsTo
|
||||
// will panic if the right eigenvectors were not computed during the factorization,
|
||||
// or if the factorization was not successful.
|
||||
//
|
||||
@@ -288,7 +288,7 @@ func (e *Eigen) VectorsTo(dst *CDense) *CDense {
|
||||
return dst
|
||||
}
|
||||
|
||||
// LeftVectors returns the left eigenvectors of the decomposition. Vectors
|
||||
// LeftVectorsTo returns the left eigenvectors of the decomposition. LeftVectorsTo
|
||||
// will panic if the left eigenvectors were not computed during the factorization,
|
||||
// or if the factorization was not successful.
|
||||
//
|
||||
|
Reference in New Issue
Block a user