mathext: add dilogarithm function Li2

This commit is contained in:
Schwarf
2025-09-24 21:44:24 +02:00
committed by GitHub
parent ceaa7d4909
commit 9c251ca029
2 changed files with 159 additions and 0 deletions

66
mathext/dilog.go Normal file
View File

@@ -0,0 +1,66 @@
// Copyright ©2025 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"math"
"math/cmplx"
)
// Li2 returns the dilogarithm Li2(z) on the principal branch.
//
// For |z| < 1, Li2(z) is defined by the power series
//
// Li2(z) = SUM_{k=1}^{infinity} z^k / k^2
//
// and is analytically continued to the rest of the complex plane.
// The implementation uses reflection and inversion identities to map z into
// a region where the series converges rapidly, then evaluates the series.
//
// Branch cut: Li2 has a logarithmic branch point at z=1 with the standard
// cut on the real axis for z in the interval (1, infinity). The principal value is taken with
// Arg(z) element of (Pi, Pi].
func Li2(z complex128) complex128 {
// Special cases
if z == 0 {
return 0
}
if z == 1 {
return complex(math.Pi*math.Pi/6, 0)
}
if z == -1 {
return complex(-math.Pi*math.Pi/12, 0)
}
// Reflection: map Re(z) > 0.5 into left half-plane for better convergence
// This formula is applied before inversion on the principal branch and gives very accurate results
// for real z > 1 because Li2(-1) and similar values are known exactly.
// Inversion first would also be valid, but is more sensitive to the
// Arg(-z)= +/-Pi branch choice in log(-z) and can yield wrong imaginary signs
// if care is not taken.
if real(z) > 0.5 {
return complex(math.Pi*math.Pi/6, 0) - complex128(cmplx.Log(z)*cmplx.Log(1-z)) - Li2(1-z)
}
// Inversion: map |z| > 1 into unit disk
if cmplx.Abs(z) > 1 {
logmz := cmplx.Log(-z)
return -complex(math.Pi*math.Pi/6, 0) - complex128(0.5*logmz*logmz) - Li2(1/z)
}
// Direct series for |z| <= 1 and Re(z) <= 0.5
return li2Series(z)
}
func li2Series(z complex128) complex128 {
const tol = 1e-15
var sum complex128
zk := z // zk = z^k
for k := 1.0; cmplx.Abs(zk)/(k*k) > tol; k++ {
k2 := k * k
sum += complex(real(zk)/k2, imag(zk)/k2)
zk *= z
}
return sum
}

93
mathext/dilog_test.go Normal file
View File

@@ -0,0 +1,93 @@
// Copyright ©2025 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"math"
"math/cmplx"
"testing"
"gonum.org/v1/gonum/cmplxs/cscalar"
)
func TestDiLogValues(t *testing.T) {
t.Parallel()
const tol = 1e-12
for _, test := range []struct {
in, want complex128
}{
// Reference values were generated using Python's scipy.special.spence
// (where Li2(z) = spence(1 - z)) and verified with a computer algebra system.
// well known values
{in: 0, want: 0},
{in: 1, want: math.Pi * math.Pi / 6},
{in: -1, want: -math.Pi * math.Pi / 12},
{in: 0.5, want: math.Pi*math.Pi/12 - math.Ln2*math.Ln2/2},
{in: 2, want: complex(math.Pi*math.Pi/4, -math.Pi*math.Ln2)},
// abs(z) < 0.5
{in: 0.1 + 0.1i, want: 0.099751196798713 + 0.105220383905600i},
{in: -0.3 + 0.39i, want: -0.306174046754339 + 0.337550668621259i},
{in: 0.001 - 0.49i, want: -0.055831393285929 - 0.478156430372353i},
// 0.5 < abs(z) < 1
{in: -0.9999 + 0.001i, want: -0.8223978143206974 + 0.0006931664732411i},
{in: 0.5 + 0.7i, want: 0.359364350522653 + 0.856767712327590i},
{in: complex(math.Pi/4, -math.Pi/7), want: 0.828086461155377 - 0.739345385309341i},
{in: -0.8 - 0.0001i, want: -0.679781588954542 - 0.000073473333084i},
// abs(z) > 1
{in: -1.1 + 0.1i, want: -0.8917388814454027 + 0.0674285967726009i},
{in: 5 + 0i, want: 1.783719161266631 - 5.056198322111862i},
{in: -10 + 0i, want: -4.198277886858104 + 0i},
{in: 1000 + 10000i, want: -42.71073756884990 + 15.39396088869304i},
{in: -1791.91931 + 0.5i, want: -29.70223568904652 + 0.00209038439188i},
} {
got := Li2(test.in)
diff := cmplx.Abs(got - test.want)
if cmplx.Abs(test.want) != 0 {
if !cscalar.EqualWithinRel(got, test.want, tol) {
t.Errorf("Li2(%g) relative error %g exceeds tol %g", test.in, diff/cmplx.Abs(test.want), tol)
}
} else if !cscalar.EqualWithinAbs(got, test.want, tol) {
t.Errorf("Li2(%g) abs error %g exceeds tol %g", test.in, diff, tol)
}
}
}
func TestDiLogProperties(t *testing.T) {
t.Parallel()
const tol = 1e-12
// Duplication formula: Li2(z^2) = 2*(Li2(z) + Li2(-z))
for i, z := range []complex128{
0.1 + 0.1i,
-0.3 + 0.4i,
0.5,
200,
} {
lhs := Li2(z * z)
rhs := 2 * (Li2(z) + Li2(-z))
if !cscalar.EqualWithinAbs(lhs, rhs, tol) {
t.Errorf("duplication formula failed for case %d, z=%v: got %v want %v", i, z, lhs, rhs)
}
}
// Conjugation symmetry: Li2(conj(z)) == conj(Li2(z))
// Valid for all z not on the branch cut (real z > 1).
for i, z := range []complex128{
0.3 + 0.5i,
-0.8 + 0.1i,
2 + 0.7i,
} {
lhs := Li2(cmplx.Conj(z))
rhs := cmplx.Conj(Li2(z))
if !cscalar.EqualWithinAbs(lhs, rhs, tol) {
t.Errorf("conjugation symmetry failed for case %d, z=%v: got %v want %v", i, z, lhs, rhs)
}
}
}